최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기International journal of molecular sciences, v.21 no.3, 2020년, pp.990 -
Kim, Kangsan (Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea) , Choe, Donghui (kskim2474@kaist.ac.kr (K.K.)) , Lee, Dae-Hee (robinald@kaist.ac.kr (D.C.)) , Cho, Byung-Kwan (Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea)
A large proportion of the recombinant proteins manufactured today rely on microbe-based expression systems owing to their relatively simple and cost-effective production schemes. However, several issues in microbial protein expression, including formation of insoluble aggregates, low protein yield, ...
1. Itakura K. Hirose T. Crea R. Riggs A.D. Heyneker H.L. Bolivar F. Boyer H.W. Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin Science 1977 198 1056 1063 10.1126/science.412251 412251
2. Williams D.C. Van Frank R.M. Muth W.L. Burnett J.P. Cytoplasmic inclusion bodies in Escherichia coli producing biosynthetic human insulin proteins Science 1982 215 687 689 10.1126/science.7036343 7036343
3. Carlson R. Estimating the biotech sector’s contribution to the US economy Nat. Biotechnol. 2016 34 247 255 10.1038/nbt.3491 26963545
4. Sanchez-Garcia L. Martin L. Mangues R. Ferrer-Miralles N. Vazquez E. Villaverde A. Recombinant pharmaceuticals from microbial cells: A 2015 update Microb. Cell Fact. 2016 15 33 10.1186/s12934-016-0437-3 26861699
5. Tanhaiean A. Azghandi M. Razmyar J. Mohammadi E. Sekhavati M.H. Recombinant production of a chimeric antimicrobial peptide in E. coli and assessment of its activity against some avian clinically isolated pathogens Microb. Pathog. 2018 122 73 78 10.1016/j.micpath.2018.06.012 29890331
6. Robinson M.P. Ke N. Lobstein J. Peterson C. Szkodny A. Mansell T.J. Tuckey C. Riggs P.D. Colussi P.A. Noren C.J. Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria Nat. Commun. 2015 6 8072 10.1038/ncomms9072 26311203
7. Jaeger K.E. Eggert T. Eipper A. Reetz M.T. Directed evolution and the creation of enantioselective biocatalysts Appl. Microbiol. Biotechnol. 2001 55 519 530 10.1007/s002530100643 11414315
8. Derman A.I. Beckwith J. Escherichia coli alkaline phosphatase fails to acquire disulfide bonds when retained in the cytoplasm J. Bacteriol. 1991 173 7719 7722 10.1128/JB.173.23.7719-7722.1991 1938970
9. Kane J.F. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli Curr. Opin. Biotechnol. 1995 6 494 500 10.1016/0958-1669(95)80082-4 7579660
10. Vallejo L.F. Rinas U. Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins Microb. Cell Fact. 2004 3 11 10.1186/1475-2859-3-11 15345063
11. Jenkins N. Curling E.M. Glycosylation of recombinant proteins: Problems and prospects Enzym. Microb. Technol. 1994 16 354 364 10.1016/0141-0229(94)90149-X
12. Paddon C.J. Westfall P.J. Pitera D.J. Benjamin K. Fisher K. McPhee D. Leavell M.D. Tai A. Main A. Eng D. High-level semi-synthetic production of the potent antimalarial artemisinin Nature 2013 496 528 532 10.1038/nature12051 23575629
13. Luli G.W. Strohl W.R. Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations Appl. Environ. Microbiol. 1990 56 1004 1011 10.1128/AEM.56.4.1004-1011.1990 2187400
14. Li D. Fu G. Tu R. Jin Z. Zhang D. High-efficiency expression and secretion of human FGF21 in Bacillus subtilis by intercalation of a mini-cistron cassette and combinatorial optimization of cell regulatory components Microb. Cell Fact. 2019 18 17 10.1186/s12934-019-1066-4 30691455
15. Studier F.W. Moffatt B.A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes J. Mol. Biol. 1986 189 113 130 10.1016/0022-2836(86)90385-2 3537305
16. Guzman L.M. Belin D. Carson M.J. Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter J. Bacteriol. 1995 177 4121 4130 10.1128/JB.177.14.4121-4130.1995 7608087
17. Wang R.F. Kushner S.R. Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli Gene 1991 100 195 199 10.1016/0378-1119(91)90366-J 2055470
18. Nallamsetty S. Waugh D.S. A generic protocol for the expression and purification of recombinant proteins in Escherichia coli using a combinatorial His6-maltose binding protein fusion tag Nat. Protoc. 2007 2 383 391 10.1038/nprot.2007.50 17406599
19. Baneyx F. Mujacic M. Recombinant protein folding and misfolding in Escherichia coli Nat. Biotechnol. 2004 22 1399 1408 10.1038/nbt1029 15529165
20. Dittrich C.R. Vadali R.V. Bennett G.N. San K.Y. Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E. coli mutant strains with deletion of the ackA-pta and poxB pathways for the synthesis of isoamyl acetate Biotechnol. Prog. 2005 21 627 631 10.1021/bp049730r 15801810
21. Aristidou A.A. San K.Y. Bennett G.N. Metabolic engineering of Escherichia coli to enhance recombinant protein production through acetate reduction Biotechnol. Prog. 1995 11 475 478 10.1021/bp00034a019 7654314
22. Dragosits M. Mattanovich D. Adaptive laboratory evolution-principles and applications for biotechnology Microb. Cell Fact. 2013 12 64 10.1186/1475-2859-12-64 23815749
23. Liponska A. Ousalem F. Aalberts D.P. Hunt J.F. Boel G. The new strategies to overcome challenges in protein production in bacteria Microb. Biotechnol. 2019 12 44 47 10.1111/1751-7915.13338 30484965
24. Choe D. Cho S. Kim S.C. Cho B.K. Minimal genome: Worthwhile or worthless efforts toward being smaller? Biotechnol. J. 2016 11 199 211 10.1002/biot.201400838 26356135
25. Cho B.K. Zengler K. Qiu Y. Park Y.S. Knight E.M. Barrett C.L. Gao Y. Palsson B.O. The transcription unit architecture of the Escherichia coli genome Nat. Biotechnol. 2009 27 1043 1049 10.1038/nbt.1582 19881496
26. Nakahigashi K. Toya Y. Ishii N. Soga T. Hasegawa M. Watanabe H. Takai Y. Honma M. Mori H. Tomita M. Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism Mol. Syst. Biol. 2009 5 306 10.1038/msb.2009.65 19756045
27. Gibson D.G. Young L. Chuang R.Y. Venter J.C. Hutchison C.A. Smith H.O. Enzymatic assembly of DNA molecules up to several hundred kilobases Nat. Methods 2009 6 343 345 10.1038/nmeth.1318 19363495
28. Carr P.A. Church G.M. Genome engineering Nat. Biotechnol. 2009 27 1151 1162 10.1038/nbt.1590 20010598
29. Chin J.W. Molecular biology. Reprogramming the genetic code Science 2012 336 428 429 22539711
30. Smanski M.J. Bhatia S. Zhao D. Park Y. Lauren B.A.W. Giannoukos G. Ciulla D. Busby M. Calderon J. Nicol R. Functional optimization of gene clusters by combinatorial design and assembly Nat. Biotechnol. 2014 32 1241 1249 10.1038/nbt.3063 25419741
31. Chi H. Wang X. Shao Y. Qin Y. Deng Z. Wang L. Chen S. Engineering and modification of microbial chassis for systems and synthetic biology Synth. Syst. Biotechnol. 2019 4 25 33 10.1016/j.synbio.2018.12.001 30560208
32. Berman H.M. Westbrook J. Feng Z. Gilliland G. Bhat T.N. Weissig H. Shindyalov I.N. Bourne P.E. The Protein Data Bank Nucleic Acids. Res. 2000 28 235 242 10.1093/nar/28.1.235 10592235
33. Saccardo P. Corchero J.L. Ferrer-Miralles N. Tools to cope with difficult-to-express proteins Appl. Microbiol. Biotechnol. 2016 100 4347 4355 10.1007/s00253-016-7514-8 27079572
34. Li G.W. Oh E. Weissman J.S. The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria Nature 2012 484 538 541 10.1038/nature10965 22456704
35. Salis H.M. Mirsky E.A. Voigt C.A. Automated design of synthetic ribosome binding sites to control protein expression Nat. Biotechnol. 2009 27 946 950 10.1038/nbt.1568 19801975
36. Seo S.W. Yang J.S. Cho H.S. Yang J. Kim S.C. Park J.M. Kim S. Jung G.Y. Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels Sci. Rep. 2014 4 4515 10.1038/srep04515 24682040
37. Miksch G. Bettenworth F. Friehs K. Flaschel E. Saalbach A. Twellmann T. Nattkemper T.W. Libraries of synthetic stationary-phase and stress promoters as a tool for fine-tuning of expression of recombinant proteins in Escherichia coli J. Biotechnol. 2005 120 25 37 10.1016/j.jbiotec.2005.04.027 16019099
38. Chen Y.J. Liu P. Nielsen A.A. Brophy J.A. Clancy K. Peterson T. Voigt C.A. Characterization of 582 natural and synthetic terminators and quantification of their design constraints Nat. Methods 2013 10 659 664 10.1038/nmeth.2515 23727987
39. Zaslaver A. Bren A. Ronen M. Itzkovitz S. Kikoin I. Shavit S. Liebermeister W. Surette M.G. Alon U. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli Nat. Methods 2006 3 623 628 10.1038/nmeth895 16862137
40. Strandberg L. Andersson L. Enfors S.O. The use of fed batch cultivation for achieving high cell densities in the production of a recombinant protein in Escherichia coli FEMS Microbiol. Rev. 1994 14 53 56 10.1111/j.1574-6976.1994.tb00072.x 8011360
41. Terpe K. Overview of bacterial expression systems for heterologous protein production: From molecular and biochemical fundamentals to commercial systems Appl. Microbiol. Biotechnol. 2006 72 211 222 10.1007/s00253-006-0465-8 16791589
42. Apweiler R. Hermjakob H. Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database Biochim. Biophys. Acta 1999 1473 4 8 10.1016/S0304-4165(99)00165-8 10580125
43. Brown J.L. Roberts W.K. Evidence that approximately eighty per cent of the soluble proteins from Ehrlich ascites cells are Nalpha-acetylated J. Biol. Chem. 1976 251 1009 1014 1249063
44. Holmes W.M. Mannakee B.K. Gutenkunst R.N. Serio T.R. Loss of amino-terminal acetylation suppresses a prion phenotype by modulating global protein folding Nat. Commun. 2014 5 4383 10.1038/ncomms5383 25023910
45. Wacker M. Linton D. Hitchen P.G. Nita-Lazar M. Haslam S.M. North S.J. Panico M. Morris H.R. Dell A. Wren B.W. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli Science 2002 298 1790 1793 10.1126/science.298.5599.1790 12459590
46. Murata T. Shinozuka Y. Obata Y. Yokoyama K.K. Phosphorylation of two eukaryotic transcription factors, Jun dimerization protein 2 and activation transcription factor 2, in Escherichia coli by Jun N-terminal kinase 1 Anal. Biochem. 2008 376 115 121 10.1016/j.ab.2008.01.038 18307971
47. Ren Y. Yao X. Dai H. Li S. Fang H. Chen H. Zhou C. Production of Nalpha-acetylated thymosin alpha1 in Escherichia coli Microb. Cell Fact. 2011 10 26 10.1186/1475-2859-10-26 21513520
48. Eastwood T.A. Baker K. Brooker H.R. Frank S. Mulvihill D.P. An enhanced recombinant amino-terminal acetylation system and novel in vivo high-throughput screen for molecules affecting alpha-synuclein oligomerisation FEBS Lett. 2017 591 833 841 10.1002/1873-3468.12597 28214355
49. Neumann H. Peak-Chew S.Y. Chin J.W. Genetically encoding N(epsilon)-acetyllysine in recombinant proteins Nat. Chem. Biol. 2008 4 232 234 10.1038/nchembio.73 18278036
50. de Marco A. Deuerling E. Mogk A. Tomoyasu T. Bukau B. Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E coli. BMC Biotechnol. 2007 7 32 10.1186/1472-6750-7-32 17565681
51. Bessette P.H. Aslund F. Beckwith J. Georgiou G. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm Proc. Natl. Acad. Sci. USA 1999 96 13703 13708 10.1073/pnas.96.24.13703 10570136
52. Hatahet F. Nguyen V.D. Salo K.E. Ruddock L.W. Disruption of reducing pathways is not essential for efficient disulfide bond formation in the cytoplasm of E. coli Microb. Cell Fact. 2010 9 67 10.1186/1475-2859-9-67 20836848
53. Miroux B. Walker J.E. Over-production of proteins in Escherichia coli : Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels J. Mol. Biol. 1996 260 289 298 10.1006/jmbi.1996.0399 8757792
54. Schlegel S. Lofblom J. Lee C. Hjelm A. Klepsch M. Strous M. Drew D. Slotboom D.J. de Gier J.W. Optimizing membrane protein overexpression in the Escherichia coli strain Lemo21(DE3) J. Mol. Biol. 2012 423 648 659 10.1016/j.jmb.2012.07.019 22858868
55. Tegel H. Tourle S. Ottosson J. Persson A. Increased levels of recombinant human proteins with the Escherichia coli strain Rosetta(DE3) Protein Expr. Purif. 2010 69 159 167 10.1016/j.pep.2009.08.017 19733669
56. Wu X.C. Lee W. Tran L. Wong S.L. Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases J. Bacteriol. 1991 173 4952 4958 10.1128/JB.173.16.4952-4958.1991 1907264
57. Thwaite J.E. Baillie L.W. Carter N.M. Stephenson K. Rees M. Harwood C.R. Emmerson P.T. Optimization of the cell wall microenvironment allows increased production of recombinant Bacillus anthracis protective antigen from B. subtilis Appl. Environ. Microbiol. 2002 68 227 234 10.1128/AEM.68.1.227-234.2002 11772631
58. Kuipers O.P. Beerthuyzen M.M. de Ruyter P.G. Luesink E.J. de Vos W.M. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction J. Biol. Chem. 1995 270 27299 27304 10.1074/jbc.270.45.27299 7592991
59. Sohlemann P. Soppa J. Oesterhelt D. Lohse M.J. Expression of beta 2-adrenoceptors in halobacteria Naunyn Schmiedebergs Arch. Pharmacol. 1997 355 150 160 10.1007/PL00004926 9050006
60. Lobasso S. Vitale R. Lopalco P. Corcelli A. Haloferax volcanii, as a Novel Tool for Producing Mammalian Olfactory Receptors Embedded in Archaeal Lipid Bilayer Life 2015 5 770 782 10.3390/life5010770 25761264
61. Suzuki H. Yoshida K. Ohshima T. Polysaccharide-degrading thermophiles generated by heterologous gene expression in Geobacillus kaustophilus HTA426 Appl. Environ. Microbiol. 2013 79 5151 5158 10.1128/AEM.01506-13 23793634
62. Wacker M. Feldman M.F. Callewaert N. Kowarik M. Clarke B.R. Pohl N.L. Hernandez M. Vines E.D. Valvano M.A. Whitfield C. Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems Proc. Natl. Acad. Sci. USA 2006 103 7088 7093 10.1073/pnas.0509207103 16641107
63. Valderrama-Rincon J.D. Fisher A.C. Merritt J.H. Fan Y.Y. Reading C.A. Chhiba K. Heiss C. Azadi P. Aebi M. DeLisa M.P. An engineered eukaryotic protein glycosylation pathway in Escherichia coli Nat. Chem. Biol. 2012 8 434 436 10.1038/nchembio.921 22446837
64. Schaffer C. Messner P. Emerging facets of prokaryotic glycosylation FEMS Microbiol. Rev. 2017 41 49 91 10.1093/femsre/fuw036 27566466
65. Thurmond J.M. Hards R.G. Seipelt C.T. Leonard A.E. Hansson L. Stromqvist M. Bystrom M. Enquist K. Xu B.C. Kopchick J.J. Expression and characterization of phosphorylated recombinant human beta-casein in Escherichia coli Protein Expr. Purif. 1997 10 202 208 10.1006/prep.1997.0737 9226716
66. Christensen D.G. Meyer J.G. Baumgartner J.T. D’Souza A.K. Nelson W.C. Payne S.H. Kuhn M.L. Schilling B. Wolfe A.J. Identification of Novel Protein Lysine Acetyltransferases in Escherichia coli mBio 2018 9 e01905-18 10.1128/mBio.01905-18
67. Amrein K.E. Takacs B. Stieger M. Molnos J. Flint N.A. Burn P. Purification and characterization of recombinant human p50csk protein-tyrosine kinase from an Escherichia coli expression system overproducing the bacterial chaperones GroES and GroEL Proc. Natl. Acad. Sci. USA 1995 92 1048 1052 10.1073/pnas.92.4.1048 7862631
68. Nishihara K. Kanemori M. Yanagi H. Yura T. Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli Appl. Environ. Microbiol. 2000 66 884 889 10.1128/AEM.66.3.884-889.2000 10698746
69. Prinz W.A. Aslund F. Holmgren A. Beckwith J. The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm J. Biol. Chem. 1997 272 15661 15667 10.1074/jbc.272.25.15661 9188456
70. Bosnjak I. Bojovic V. Segvic-Bubic T. Bielen A. Occurrence of protein disulfide bonds in different domains of life: A comparison of proteins from the Protein Data Bank Protein Eng. Des. Sel. 2014 27 65 72 10.1093/protein/gzt063 24407015
71. Freudl R. Signal peptides for recombinant protein secretion in bacterial expression systems Microb. Cell Fact. 2018 17 52 10.1186/s12934-018-0901-3 29598818
72. Stewart E.J. Aslund F. Beckwith J. Disulfide bond formation in the Escherichia coli cytoplasm: An in vivo role reversal for the thioredoxins EMBO J. 1998 17 5543 5550 10.1093/emboj/17.19.5543 9755155
73. Faulkner M.J. Veeravalli K. Gon S. Georgiou G. Beckwith J. Functional plasticity of a peroxidase allows evolution of diverse disulfide-reducing pathways Proc. Natl. Acad. Sci. USA 2008 105 6735 6740 10.1073/pnas.0801986105 18456836
74. Gaciarz A. Khatri N.K. Velez-Suberbie M.L. Saaranen M.J. Uchida Y. Keshavarz-Moore E. Ruddock L.W. Efficient soluble expression of disulfide bonded proteins in the cytoplasm of Escherichia coli in fed-batch fermentations on chemically defined minimal media Microb. Cell Fact. 2017 16 108 10.1186/s12934-017-0721-x 28619018
75. Schlegel S. Genevaux P. de Gier J.W. De-convoluting the Genetic Adaptations of E. coli C41(DE3) in Real Time Reveals How Alleviating Protein Production Stress Improves Yields Cell Rep. 2015 10 1758 1766 10.1016/j.celrep.2015.02.029 25772362
76. Giacalone M.J. Gentile A.M. Lovitt B.T. Berkley N.L. Gunderson C.W. Surber M.W. Toxic protein expression in Escherichia coli using a rhamnose-based tightly regulated and tunable promoter system Biotechniques 2006 40 355 364 10.2144/000112112 16568824
77. Schallmey M. Singh A. Ward O.P. Developments in the use of Bacillus species for industrial production Can. J. Microbiol. 2004 50 1 17 10.1139/w03-076 15052317
78. Westers L. Westers H. Quax W.J. Bacillus subtilis as cell factory for pharmaceutical proteins: A biotechnological approach to optimize the host organism Biochim. Biophys. Acta 2004 1694 299 310 10.1016/j.bbamcr.2004.02.011 15546673
79. Dong H. Zhang D. Current development in genetic engineering strategies of Bacillus species Microb. Cell Fact. 2014 13 63 10.1186/1475-2859-13-63 24885003
80. Boratynski J. Szermer-Olearnik B. Endotoxin Removal from Escherichia coli Bacterial Lysate Using a Biphasic Liquid System Methods Mol. Biol. 2017 1600 107 112 28478561
81. Simonen M. Palva I. Protein secretion in Bacillus species Microbiol. Rev. 1993 57 109 137 10.1128/MMBR.57.1.109-137.1993 8464403
82. Tjalsma H. Antelmann H. Jongbloed J.D. Braun P.G. Darmon E. Dorenbos R. Dubois J.Y. Westers H. Zanen G. Quax W.J. Proteomics of protein secretion by Bacillus subtilis: Separating the secrets of the secretome Microbiol. Mol. Biol. Rev. 2004 68 207 233 10.1128/MMBR.68.2.207-233.2004 15187182
83. Diao L. Dong Q. Xu Z. Yang S. Zhou J. Freudl R. Functional implementation of the posttranslational SecB-SecA protein-targeting pathway in Bacillus subtilis Appl. Environ. Microbiol. 2012 78 651 659 10.1128/AEM.07209-11 22113913
84. Kakeshita H. Kageyama Y. Ara K. Ozaki K. Nakamura K. Enhanced extracellular production of heterologous proteins in Bacillus subtilis by deleting the C-terminal region of the SecA secretory machinery Mol. Biotechnol. 2010 46 250 257 10.1007/s12033-010-9295-0 20574771
85. Chen J. Zhao L. Fu G. Zhou W. Sun Y. Zheng P. Sun J. Zhang D. A novel strategy for protein production using non-classical secretion pathway in Bacillus subtilis Microb. Cell Fact. 2016 15 69 10.1186/s12934-016-0469-8 27125780
86. Zhao L. Chen J. Sun J. Zhang D. Multimer recognition and secretion by the non-classical secretion pathway in Bacillus subtilis Sci. Rep. 2017 7 44023 10.1038/srep44023 28276482
87. He X.S. Bruckner R. Doi R.H. The protease genes of Bacillus subtilis Res. Microbiol. 1991 142 797 803 10.1016/0923-2508(91)90058-I 1784819
88. Westers L. Dijkstra D.S. Westers H. van Dijl J.M. Quax W.J. Secretion of functional human interleukin-3 from Bacillus subtilis J. Biotechnol. 2006 123 211 224 10.1016/j.jbiotec.2005.11.007 16359746
89. Wong S.L. Ye R. Nathoo S. Engineering and production of streptokinase in a Bacillus subtilis expression-secretion system Appl. Environ. Microbiol. 1994 60 517 523 10.1128/AEM.60.2.517-523.1994 8135514
90. Murashima K. Chen C.L. Kosugi A. Tamaru Y. Doi R.H. Wong S.L. Heterologous production of Clostridium cellulovorans engB, using protease-deficient Bacillus subtilis, and preparation of active recombinant cellulosomes J. Bacteriol. 2002 184 76 81 10.1128/JB.184.1.76-81.2002 11741846
91. Ji S. Li W. Baloch A.R. Wang M. Li H. Cao B. Zhang H. Efficient biosynthesis of a Cecropin A-melittin mutant in Bacillus subtilis WB700 Sci. Rep. 2017 7 40587 10.1038/srep40587 28071737
92. Zweers J.C. Barak I. Becher D. Driessen A.J. Hecker M. Kontinen V.P. Saller M.J. Vavrova L. van Dijl J.M. Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes Microb. Cell Fact. 2008 7 10 10.1186/1475-2859-7-10 18394159
93. Steidler L. Hans W. Schotte L. Neirynck S. Obermeier F. Falk W. Fiers W. Remaut E. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10 Science 2000 289 1352 1355 10.1126/science.289.5483.1352 10958782
94. Mierau I. Kleerebezem M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis Appl. Microbiol. Biotechnol. 2005 68 705 717 10.1007/s00253-005-0107-6 16088349
95. Boumaiza M. Colarusso A. Parrilli E. Garcia-Fruitos E. Casillo A. Aris A. Corsaro M.M. Picone D. Leone S. Tutino M.L. Getting value from the waste: Recombinant production of a sweet protein by Lactococcus lactis grown on cheese whey Microb. Cell Fact. 2018 17 126 10.1186/s12934-018-0974-z 30111331
96. Mierau I. Olieman K. Mond J. Smid E.J. Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications Microb. Cell Fact. 2005 4 16 10.1186/1475-2859-4-16 15921537
97. Steen A. Wiederhold E. Gandhi T. Breitling R. Slotboom D.J. Physiological adaptation of the bacterium Lactococcus lactis in response to the production of human CFTR Mol. Cell Proteom. 2011 10 M000052MCP200 10.1074/mcp.M000052-MCP201
98. Singh S.K. Tiendrebeogo R.W. Chourasia B.K. Kana I.H. Singh S. Theisen M. Lactococcus lactis provides an efficient platform for production of disulfide-rich recombinant proteins from Plasmodium falciparum Microb. Cell Fact. 2018 17 55 10.1186/s12934-018-0902-2 29618355
99. Cano-Garrido O. Rueda F.L. Sanchez-Garcia L. Ruiz-Avila L. Bosser R. Villaverde A. Garcia-Fruitos E. Expanding the recombinant protein quality in Lactococcus lactis Microb. Cell Fact. 2014 13 167 10.1186/s12934-014-0167-3 25471301
100. Geertsma E.R. Poolman B. High-throughput cloning and expression in recalcitrant bacteria Nat. Methods 2007 4 705 707 10.1038/nmeth1073 17643108
101. Ventosa A. Nieto J.J. Oren A. Biology of moderately halophilic aerobic bacteria Microbiol. Mol. Biol. Rev. 1998 62 504 544 10.1128/MMBR.62.2.504-544.1998 9618450
102. Arakawa T. Timasheff S.N. The stabilization of proteins by osmolytes Biophys. J. 1985 47 411 414 10.1016/S0006-3495(85)83932-1 3978211
103. Tokunaga H. Arakawa T. Tokunaga M. Novel soluble expression technologies derived from unique properties of halophilic proteins Appl. Microbiol. Biotechnol. 2010 88 1223 1231 10.1007/s00253-010-2832-8 20838790
104. Nagayoshi C. Ishibashi M. Tokunaga M. Purification and characterization of human brain serine racemase expressed in moderately halophilic bacteria Protein Pept. Lett. 2009 16 201 206 10.2174/092986609787316261 19200045
105. Zeldes B.M. Keller M.W. Loder A.J. Straub C.T. Adams M.W. Kelly R.M. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals Front. Microbiol. 2015 6 1209 10.3389/fmicb.2015.01209 26594201
106. Cava F. Hidalgo A. Berenguer J. Thermus thermophilus as biological model Extremophiles 2009 13 213 231 10.1007/s00792-009-0226-6 19156357
107. Velez A.M. Horta A.C. da Silva A.J. Iemma M.R. Giordano Rde L. Zangirolami T.C. Enhanced production of recombinant thermo-stable lipase in Escherichia coli at high induction temperature Protein Expr. Purif. 2013 90 96 103 10.1016/j.pep.2013.05.005 23727254
108. Sorensen H.P. Sperling-Petersen H.U. Mortensen K.K. Production of recombinant thermostable proteins expressed in Escherichia coli : Completion of protein synthesis is the bottleneck J. Chromatogr. B Anal. Technol. Biomed Life Sci. 2003 786 207 214 10.1016/S1570-0232(02)00689-X
109. Albers S.V. Jonuscheit M. Dinkelaker S. Urich T. Kletzin A. Tampe R. Driessen A.J. Schleper C. Production of recombinant and tagged proteins in the hyperthermophilic archaeon Sulfolobus solfataricus Appl. Environ. Microbiol. 2006 72 102 111 10.1128/AEM.72.1.102-111.2006 16391031
110. Drejer E.B. Hakvag S. Irla M. Brautaset T. Genetic Tools and Techniques for Recombinant Expression in Thermophilic Bacillaceae Microorganisms. 2018 6 42 10.3390/microorganisms6020042
111. Khalil A.S. Collins J.J. Synthetic biology: Applications come of age Nat. Rev. Genet. 2010 11 367 379 10.1038/nrg2775 20395970
112. Vickers C.E. Blank L.M. Kromer J.O. Grand challenge commentary: Chassis cells for industrial biochemical production Nat. Chem. Biol. 2010 6 875 877 10.1038/nchembio.484 21079595
113. Morimoto T. Kadoya R. Endo K. Tohata M. Sawada K. Liu S. Ozawa T. Kodama T. Kakeshita H. Kageyama Y. Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis DNA Res. 2008 15 73 81 10.1093/dnares/dsn002 18334513
114. Bu Q.T. Yu P. Wang J. Li Z.Y. Chen X.A. Mao X.M. Li Y.Q. Rational construction of genome-reduced and high-efficient industrial Streptomyces chassis based on multiple comparative genomic approaches Microb. Cell Fact. 2019 18 16 10.1186/s12934-019-1055-7 30691531
115. Gibson D.G. Benders G.A. Andrews-Pfannkoch C. Denisova E.A. Baden-Tillson H. Zaveri J. Stockwell T.B. Brownley A. Thomas D.W. Algire M.A. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome Science 2008 319 1215 1220 10.1126/science.1151721 18218864
116. Hutchison C.A. Chuang R.Y. Noskov V.N. Assad-Garcia N. Deerinck T.J. Ellisman M.H. Gill J. Kannan K. Karas B.J. Ma L. Design and synthesis of a minimal bacterial genome Science 2016 351 6253 10.1126/science.aad6253
117. Fredens J. Wang K. de la Torre D. Funke L.F.H. Robertson W.E. Christova Y. Chia T. Schmied W.H. Dunkelmann D.L. Beranek V. Total synthesis of Escherichia coli with a recoded genome Nature 2019 569 514 518 10.1038/s41586-019-1192-5 31092918
118. Wang K. Fredens J. Brunner S.F. Kim S.H. Chia T. Chin J.W. Defining synonymous codon compression schemes by genome recoding Nature 2016 539 59 64 10.1038/nature20124 27776354
119. Wang K. Sachdeva A. Cox D.J. Wilf N.M. Lang K. Wallace S. Mehl R.A. Chin J.W. Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET Nat. Chem. 2014 6 393 403 10.1038/nchem.1919 24755590
120. Datsenko K.A. Wanner B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products Proc. Natl. Acad. Sci. USA 2000 97 6640 6645 10.1073/pnas.120163297 10829079
121. Abremski K. Hoess R. Sternberg N. Studies on the properties of P1 site-specific recombination: Evidence for topologically unlinked products following recombination Cell 1983 32 1301 1311 10.1016/0092-8674(83)90311-2 6220808
122. Broach J.R. Guarascio V.R. Jayaram M. Recombination within the yeast plasmid 2mu circle is site-specific Cell 1982 29 227 234 10.1016/0092-8674(82)90107-6 6286142
123. Hashimoto M. Ichimura T. Mizoguchi H. Tanaka K. Fujimitsu K. Keyamura K. Ote T. Yamakawa T. Yamazaki Y. Mori H. Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome Mol. Microbiol. 2005 55 137 149 10.1111/j.1365-2958.2004.04386.x 15612923
124. Posfai G. Plunkett G. Feher T. Frisch D. Keil G.M. Umenhoffer K. Kolisnychenko V. Stahl B. Sharma S.S. de Arruda M. Emergent properties of reduced-genome Escherichia coli Science 2006 312 1044 1046 10.1126/science.1126439 16645050
125. Mizoguchi H. Sawano Y. Kato J. Mori H. Superpositioning of deletions promotes growth of Escherichia coli with a reduced genome DNA Res. 2008 15 277 284 10.1093/dnares/dsn019 18753290
126. Yu B.J. Sung B.H. Koob M.D. Lee C.H. Lee J.H. Lee W.S. Kim M.S. Kim S.C. Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system Nat. Biotechnol. 2002 20 1018 1023 10.1038/nbt740 12244329
127. Park M.K. Lee S.H. Yang K.S. Jung S.C. Lee J.H. Kim S.C. Enhancing recombinant protein production with an Escherichia coli host strain lacking insertion sequences Appl. Microbiol. Biotechnol. 2014 98 6701 6713 10.1007/s00253-014-5739-y 24752842
128. Komatsu M. Uchiyama T. Omura S. Cane D.E. Ikeda H. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism Proc. Natl. Acad. Sci. USA 2010 107 2646 2651 10.1073/pnas.0914833107 20133795
129. Gomez-Escribano J.P. Bibb M.J. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters Microb. Biotechnol. 2011 4 207 215 10.1111/j.1751-7915.2010.00219.x 21342466
130. Zhou M. Jing X. Xie P. Chen W. Wang T. Xia H. Qin Z. Sequential deletion of all the polyketide synthase and nonribosomal peptide synthetase biosynthetic gene clusters and a 900-kb subtelomeric sequence of the linear chromosome of Streptomyces coelicolor FEMS Microbiol. Lett. 2012 333 169 179 10.1111/j.1574-6968.2012.02609.x 22670631
131. Thanapipatsiri A. Claesen J. Gomez-Escribano J.P. Bibb M. Thamchaipenet A. A Streptomyces coelicolor host for the heterologous expression of Type III polyketide synthase genes Microb. Cell Fact. 2015 14 145 10.1186/s12934-015-0335-0 26376792
132. Myronovskyi M. Rosenkranzer B. Nadmid S. Pujic P. Normand P. Luzhetskyy A. Generation of a cluster-free Streptomyces albus chassis strains for improved heterologous expression of secondary metabolite clusters Metab. Eng. 2018 49 316 324 10.1016/j.ymben.2018.09.004 30196100
133. Liu Q. Xiao L.P. Zhou Y.J. Deng K.H. Tan G.Y. Han Y.C. Liu X.H. Deng Z.X. Liu T.G. Development of Streptomyces sp. FR-008 as an emerging chassis Synth. Syst. Biotechnol. 2016 1 207 214 10.1016/j.synbio.2016.07.002 29062944
134. Manabe K. Kageyama Y. Morimoto T. Shimizu E. Takahashi H. Kanaya S. Ara K. Ozaki K. Ogasawara N. Improved production of secreted heterologous enzyme in Bacillus subtilis strain MGB874 via modification of glutamate metabolism and growth conditions Microb. Cell Fact. 2013 12 18 10.1186/1475-2859-12-18 23419162
135. Ara K. Ozaki K. Nakamura K. Yamane K. Sekiguchi J. Ogasawara N. Bacillus minimum genome factory: Effective utilization of microbial genome information Biotechnol. Appl. Biochem. 2007 46 169 178 17115975
136. Westers H. Dorenbos R. van Dijl J.M. Kabel J. Flanagan T. Devine K.M. Jude F. Seror S.J. Beekman A.C. Darmon E. Genome engineering reveals large dispensable regions in Bacillus subtilis Mol. Biol. Evolut. 2003 20 2076 2090 10.1093/molbev/msg219
137. Reuss D.R. Altenbuchner J. Mader U. Rath H. Ischebeck T. Sappa P.K. Thurmer A. Guerin C. Nicolas P. Steil L. Large-scale reduction of the Bacillus subtilis genome: Consequences for the transcriptional network, resource allocation, and metabolism Genome Res. 2017 27 289 299 10.1101/gr.215293.116 27965289
138. Koo B.M. Kritikos G. Farelli J.D. Todor H. Tong K. Kimsey H. Wapinski I. Galardini M. Cabal A. Peters J.M. Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis Cell Syst. 2017 4 291 305 10.1016/j.cels.2016.12.013 28189581
139. Zhu D. Fu Y. Liu F. Xu H. Saris P.E. Qiao M. Enhanced heterologous protein productivity by genome reduction in Lactococcus lactis NZ9000 Microb. Cell Fact. 2017 16 1 10.1186/s12934-016-0616-2 28049473
140. Leprince A. de Lorenzo V. Voller P. van Passel M.W. Martins dos Santos V.A. Random and cyclical deletion of large DNA segments in the genome of Pseudomonas putida Environ. Microbiol. 2012 14 1444 1453 10.1111/j.1462-2920.2012.02730.x 22429517
141. Lieder S. Nikel P.I. de Lorenzo V. Takors R. Genome reduction boosts heterologous gene expression in Pseudomonas putida Microb. Cell Fact. 2015 14 23 10.1186/s12934-015-0207-7 25890048
142. Baumgart M. Unthan S. Ruckert C. Sivalingam J. Grunberger A. Kalinowski J. Bott M. Noack S. Frunzke J. Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology Appl. Environ. Microbiol. 2013 79 6006 6015 10.1128/AEM.01634-13 23892752
143. Giga-Hama Y. Tohda H. Takegawa K. Kumagai H. Schizosaccharomyces pombe minimum genome factory Biotechnol. Appl. Biochem. 2007 46 147 155 17300221
144. Kolisnychenko V. Plunkett G. Herring C.D. Feher T. Posfai J. Blattner F.R. Posfai G. Engineering a reduced Escherichia coli genome Genome Res. 2002 12 640 647 10.1101/gr.217202 11932248
145. Aguilar Suarez R. Stulke J. van Dijl J.M. Less Is More: Toward a Genome-Reduced Bacillus Cell Factory for Difficult Proteins ACS Synth. Biol. 2019 8 99 108 10.1021/acssynbio.8b00342 30540431
146. Csorgo B. Feher T. Timar E. Blattner F.R. Posfai G. Low-mutation-rate, reduced-genome Escherichia coli : An improved host for faithful maintenance of engineered genetic constructs Microb. Cell Fact. 2012 11 11 10.1186/1475-2859-11-11 22264280
147. Lee J.H. Sung B.H. Kim M.S. Blattner F.R. Yoon B.H. Kim J.H. Kim S.C. Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production Microb. Cell Fact. 2009 8 2 10.1186/1475-2859-8-2 19128451
148. Choe D. Lee J.H. Yoo M. Hwang S. Sung B.H. Cho S. Palsson B. Kim S.C. Cho B.K. Adaptive laboratory evolution of a genome-reduced Escherichia coli Nat. Commun. 2019 10 935 10.1038/s41467-019-08888-6 30804335
149. Hirokawa Y. Kawano H. Tanaka-Masuda K. Nakamura N. Nakagawa A. Ito M. Mori H. Oshima T. Ogasawara N. Genetic manipulations restored the growth fitness of reduced-genome Escherichia coli J. Biosci. Bioeng. 2013 116 52 58 10.1016/j.jbiosc.2013.01.010 23477741
150. Mushegian A.R. Koonin E.V. A minimal gene set for cellular life derived by comparison of complete bacterial genomes Proc. Natl. Acad. Sci. USA 1996 93 10268 10273 10.1073/pnas.93.19.10268 8816789
151. Baba T. Ara T. Hasegawa M. Takai Y. Okumura Y. Baba M. Datsenko K.A. Tomita M. Wanner B.L. Mori H. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection Mol. Syst. Biol. 2006 2 10.1038/msb4100050 16738554
152. Kobayashi K. Ehrlich S.D. Albertini A. Amati G. Andersen K.K. Arnaud M. Asai K. Ashikaga S. Aymerich S. Bessieres P. Essential Bacillus subtilis genes Proc. Natl. Acad. Sci. USA 2003 100 4678 4683 10.1073/pnas.0730515100 12682299
153. van Opijnen T. Bodi K.L. Camilli A. Tn-seq: High-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms Nat. Methods 2009 6 767 772 10.1038/nmeth.1377 19767758
154. Peters J.M. Colavin A. Shi H. Czarny T.L. Larson M.H. Wong S. Hawkins J.S. Lu C.H.S. Koo B.M. Marta E. A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria Cell 2016 165 1493 1506 10.1016/j.cell.2016.05.003 27238023
155. Shlomi T. Eisenberg Y. Sharan R. Ruppin E. A genome-scale computational study of the interplay between transcriptional regulation and metabolism Mol. Syst. Biol. 2007 3 101 10.1038/msb4100141 17437026
157. Rugbjerg P. Myling-Petersen N. Porse A. Sarup-Lytzen K. Sommer M.O.A. Diverse genetic error modes constrain large-scale bio-based production Nat. Commun. 2018 9 787 10.1038/s41467-018-03232-w 29463788
158. Hoffmann F. Rinas U. Stress induced by recombinant protein production in Escherichia coli Adv. Biochem. Eng. Biotechnol. 2004 89 73 92 15217156
159. Borkowski O. Bricio C. Murgiano M. Rothschild-Mancinelli B. Stan G.B. Ellis T. Cell-free prediction of protein expression costs for growing cells Nat. Commun. 2018 9 1457 10.1038/s41467-018-03970-x 29654285
160. Thommen M. Holtkamp W. Rodnina M.V. Co-translational protein folding: Progress and methods Curr. Opin. Struct. Biol. 2017 42 83 89 10.1016/j.sbi.2016.11.020 27940242
161. Kudla G. Murray A.W. Tollervey D. Plotkin J.B. Coding-sequence determinants of gene expression in Escherichia coli Science 2009 324 255 258 10.1126/science.1170160 19359587
162. Lavner Y. Kotlar D. Codon bias as a factor in regulating expression via translation rate in the human genome Gene 2005 345 127 138 10.1016/j.gene.2004.11.035 15716084
163. Collart M.A. Weiss B. Ribosome pausing, a dangerous necessity for co-translational events Nucleic Acids Res. 2019 10.1093/nar/gkz763 31598688
164. Harris R.P. Mattocks J. Green P.S. Moffatt F. Kilby P.M. Determination and control of low-level amino acid misincorporation in human thioredoxin protein produced in a recombinant Escherichia coli production system Biotechnol. Bioeng. 2012 109 1987 1995 10.1002/bit.24462 22334292
165. Gustafsson C. Govindarajan S. Minshull J. Codon bias and heterologous protein expression Trends Biotechnol. 2004 22 346 353 10.1016/j.tibtech.2004.04.006 15245907
166. Chung B.K. Lee D.Y. Computational codon optimization of synthetic gene for protein expression BMC Syst. Biol. 2012 6 134 10.1186/1752-0509-6-134 23083100
167. Fu W. Lin J. Cen P. 5-Aminolevulinate production with recombinant Escherichia coli using a rare codon optimizer host strain Appl. Microbiol. Biotechnol. 2007 75 777 782 10.1007/s00253-007-0887-y 17333171
168. Ostrov N. Landon M. Guell M. Kuznetsov G. Teramoto J. Cervantes N. Zhou M. Singh K. Napolitano M.G. Moosburner M. Design, synthesis, and testing toward a 57-codon genome Science 2016 353 819 822 10.1126/science.aaf3639 27540174
169. McManus C.J. May G.E. Spealman P. Shteyman A. Ribosome profiling reveals post-transcriptional buffering of divergent gene expression in yeast Genome Res. 2014 24 422 430 10.1101/gr.164996.113 24318730
170. Jeong Y. Kim J.N. Kim M.W. Bucca G. Cho S. Yoon Y.J. Kim B.G. Roe J.H. Kim S.C. Smith C.P. The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2) Nat. Commun. 2016 7 11605 10.1038/ncomms11605 27251447
171. Ebrahim A. Brunk E. Tan J. O’Brien E.J. Kim D. Szubin R. Lerman J.A. Lechner A. Sastry A. Bordbar A. Multi-omic data integration enables discovery of hidden biological regularities Nat. Commun. 2016 7 13091 10.1038/ncomms13091 27782110
172. Morgan G.J. Burkhardt D.H. Kelly J.W. Powers E.T. Translation efficiency is maintained at elevated temperature in Escherichia coli J. Biol. Chem. 2018 293 777 793 10.1074/jbc.RA117.000284 29183994
173. Niess A. Siemann-Herzberg M. Takors R. Protein production in Escherichia coli is guided by the trade-off between intracellular substrate availability and energy cost Microb. Cell Fact. 2019 18 8 10.1186/s12934-019-1057-5 30654806
174. Kustatscher G. Grabowski P. Rappsilber J. Pervasive coexpression of spatially proximal genes is buffered at the protein level Mol. Syst. Biol. 2017 13 937 10.15252/msb.20177548 28835372
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.