$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

RNA‐based biocontrol compounds: current status and perspectives to reach the market 원문보기

Pest management science, v.76 no.3, 2020년, pp.841 - 845  

Taning, Clauvis NT (Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium) ,  Arpaia, Salvatore (Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), DTE‐) ,  Christiaens, Olivier (BBC, Rotondella, Italy) ,  Dietz‐Pfeilstetter, Antje (Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium) ,  Jones, Huw (Julius Kü) ,  Mezzetti, Bruno (hn‐) ,  Sabbadini, Silvia (Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Braunschweig, Germany) ,  Sorteberg, Hilde‐Gunn (IBERS, Aberystwyth University, Aberystwyth, Wales, UK) ,  Sweet, Jeremy (Department of Agricultural, Food and Environmental Sciences, Università) ,  Ventura, Vera (Politecnica delle Marche (UPM), Ancona, Italy) ,  Smagghe, Guy (Department of Agricultural, Food and)

Abstract AI-Helper 아이콘AI-Helper

AbstractFacing current climate challenges and drastically reduced chemical options for plant protection, the exploitation of RNA interference (RNAi) as an agricultural biotechnology tool has unveiled possible new solutions to the global problems of agricultural losses caused by pests and other bioti...

주제어

참고문헌 (41)

  1. Dalakouras A , Wassenegger M , Dadami E , Ganopoulos I , Pappas M and Papadopoulou KK , GMO‐free RNAi: exogenous application of RNA molecules in plants . Plant Physiol ( 2019 ). https://doi.org/10.1104/pp.19.00570. 

  2. Fire A , Xu S , Montgomery MK , Kostas SA , Driver SE and Mello CC , Potent and specific genetic interference by double‐stranded RNA in Caenorhabditis elegans . Nature 391 : 806 ( 1998 ). 

  3. Rosa C , Kuo YW , Wuriyanghan H and Falk BW , RNA interference mechanisms and applications in plant pathology . Annu Rev Phytopathol 56 : 581 – 610 ( 2018 ). 

  4. Zotti M , dos Santos EA , Cagliari D , Christiaens O , Taning CNT and Smagghe G , RNA interference technology in crop protection against arthropod pests, pathogens and nematodes . Pest Manag Sci 74 : 1239 – 1250 ( 2018 ). 

  5. ISAAA , GM Approval Database. Available: http://www.isaaa.org/gmapprovaldatabase/default.asp [2 July 2019]. 

  6. Lusk JL , Roosen J and Bieberstein A , Consumer acceptance of new food technologies: causes and roots of controversies . Annu Rev Resour Econ 6 : 381 – 405 ( 2014 ). 

  7. Wang M , Weiberg A , Lin FM , Thomma BP , Huang HD and Jin H , Bidirectional cross‐kingdom RNAi and fungal uptake of external RNAs confer plant protection . Nat Plants 2 : 16151 ( 2016 ). 

  8. Dubrovina AS and Kiselev KV , Exogenous RNAs for gene regulation and plant resistance . Int J Mol Sci 20 : 2282 ( 2019 ). 

  9. Koch A , Biedenkopf D , Furch A , Weber L , Rossbach O , Abdellatef E et al ., An RNAi‐based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery . PLoS Pathog 12 : e1005901 ( 2016 ). 

  10. Konakalla NC , Kaldis A , Berbati M , Masarapu H and Voloudakis AE , Exogenous application of double‐stranded RNA molecules from TMV p126 and CP genes confers resistance against TMV in tobacco . Planta 244 : 961 – 969 ( 2016 ). 

  11. Kaldis A , Berbati M , Melita O , Reppa C , Holeva M , Otten P et al ., Exogenously applied dsRNA molecules deriving from the Zucchini yellow mosaic virus (ZYMV) genome move systemically and protect cucurbits against ZYMV . Mol Plant Pathol 19 : 883 – 895 ( 2018 ). 

  12. Song XS , Gu KX , Duan XX , Xiao XM , Hou YP , Duan YB et al ., Secondary amplification of siRNA machinery limits the application of spray‐induced gene silencing . Mol Plant Pathol 19 : 2543 – 2560 ( 2018 ). 

  13. Kettles GJ , Hofinger BJ , Hu P , Bayon C , Rudd JJ , Balmer DA et al ., sRNA profiling combined with gene function analysis reveals a lack of evidence for cross‐kingdom RNAi in the wheat– Zymoseptoria tritici pathosystem . Front Plant Sci 10 : 892 ( 2019 ). 

  14. Dalakouras A , Jarausch W , Buchholz G , Bassler A , Braun M , Manthey T et al ., Delivery of hairpin RNAs and small RNAs into woody and herbaceous plants by trunk injection and petiole absorption . Front Plant Sci 9 : 1253 ( 2018 ). 

  15. Huang CY , Wang H , Hu P , Hamby R and Jin H , Small RNAs?–?big players in plant–microbe interactions . Cell Host Microbe 26 : 173 – 182 ( 2019 ). 

  16. Jiang L , Ding L , He B , Shen J , Xu Z , Yin M et al ., Systemic gene silencing in plants triggered by fluorescent nanoparticle‐delivered double‐stranded RNA . Nanoscale 6 : 9965 – 9969 ( 2014 ). 

  17. Numata K , Ohtani M , Yoshizumi T , Demura T and Kodama Y , Local gene silencing in plants via synthetic dsRNA and carrier peptide . Plant Biotechnol J 12 : 1027 – 1034 ( 2014 ). 

  18. Lau SE , Schwarzacher T , Othman RY and Harikrishna JA , dsRNA silencing of an R2R3‐MYB transcription factor affects flower cell shape in a Dendrobium hybrid . BMC Plant Biol 15 : 194 ( 2015 ). 

  19. Dalakouras A , Wassenegger M , McMillan JN , Cardoza V , Maegele I , Dadami E et al ., Induction of silencing in plants by high‐pressure spraying of in vitro‐synthesized small RNAs . Front Plant Sci 7 : 1327 ( 2016 ). 

  20. Kunte N , McGraw E , Bell S , Held D and Avila LA , Prospects, challenges and current status of RNAi through insect feeding . Pest Manag Sci ( 2019 ). https://doi.org/10.1002/ps.5588. 

  21. Landry MP and Mitter N , How nanocarriers delivering cargos in plants can change the GMO landscape . Nat Nanotechnol 14 : 512 ( 2019 ). 

  22. Mitter N , Worrall EA , Robinson KE , Li P , Jain RG , Taochy C et al ., Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses . Nat Plants 3 : 16207 ( 2017 ). 

  23. Zhang H , Demirer GS , Zhang H , Ye T , Goh NS , Aditham AJ et al ., DNA nanostructures coordinate gene silencing in mature plants . Proc Natl Acad Sci USA 116 : 7543 – 7548 ( 2019 ). 

  24. EPA , White Paper on RNAi Technology As A Pesticide: Problem Formulation For Human Health And Ecological Risk Assessment . United States Environmental Protection Agency , Washington, DC , p. 39 ( 2013 ) Available: https://www.thecre.com/premium/wp‐content/uploads/2012/04/RNAi‐White‐Paper.pdf [13 November 2019.]. 

  25. Mat Jalaluddin NS , Othman RY and Harikrishna JA , Global trends in research and commercialization of exogenous and endogenous RNAi technologies for crops . Crit Rev Biotechnol 39 : 67 – 78 ( 2019 ). 

  26. Frisio DG and Ventura V , Exploring the patent landscape of RNAi‐based innovation for plant breeding . Recent Pat Biotechnol 13 : 207 – 216 ( 2019 ). 

  27. Murphy JA , BioDirect technology for biocontrol annual biocontrol industry meeting borderlines in biocontrol session. Available: https://www.abim.ch/fileadmin/abim/documents/presentations2014/3_Jenny_Murphy_ABIM2014.pdf [23 September 2019]. 

  28. Jenkins DJ , BioDirect pipeline leveraging genomics for completely new modes of action with more targeted pest control. Available: http://nas‐sites.org/biotech/files/2016/04/04‐Jenkins.pdf [23 September 2019]. 

  29. European Parliament , Commission's press release on the conditional approval of the transaction: the acquisition of Monsanto by Bayer. Available: http://www.europarl.europa.eu/doceo/document/E‐8‐2018‐001137‐ASW_EN.html?redirect [23 September 2019]. 

  30. Syngenta Ghent innovation center , The future of biocontrols for agriculture at Syngenta's Ghent innovation center. Available: https://www.syngenta.be/nieuws/algemeen/future‐biocontrols‐agriculture‐syngentas‐ghent‐innovation‐center [23 September 2019]. 

  31. Maxwell B , Boyes D , Tang J , Rodrigues T , Desai S , Cunningham D et al., Enabling the RNA revolution; Cell‐free dsRNA production and control of Colorado potato beetle. Available: http://www.globalengage.co.uk/pgc/docs/PosterMaxwell.pdf [23 September 2019]. 

  32. Shew AM , Danforth DM , Nalley LL , Nayga RM Jr , Tsiboe F and Dixon BL , New innovations in agricultural biotech: Consumer acceptance of topical RNAi in rice production . Food Control 81 : 189 – 195 ( 2017 ). 

  33. Narh AB , Nalley LL , Price H , Shew AM , Nayga RM , A multi‐country study of the willingness‐to‐consume alternative (RNAi, CRISPR and Cisgenic) genetically modified food. 2019 Annual Meeting, July 21–23, Atlanta, Georgia, Agricultural and Applied Economics Association ( 2019 ). 

  34. Arpaia S , Birch ANE , Kiss J , Van Loon JJA , Messéan A , Nuti M et al ., Assessing environmental impacts of genetically modified plants on non‐target organisms: the relevance of in planta studies . Sci Total Environ 583 : 123 – 132 ( 2017 ). 

  35. Lundgren JG and Duan JJ , RNAi‐based insecticidal crops: potential effects on non‐target species . Bioscience 63 : 657 – 665 ( 2013 ). 

  36. FIFRA Scientific Advisory Panel Meeting , A Set of Scientific Issues Being Considered by the Environmental Protection Agency regarding RNAi Technology: Problem Formulation for Human Health and Ecological Risk Assessment . United States Environmental Protection Agency , Washington, DC , p. 75 ( 2014 ). 

  37. Paces J , Nic M , Novotny T and Svoboda P , Literature review of baseline information to support the risk assessment of RNAi‐based GM plants . EFSA Support Publicat 14 : 1246E ( 2017 ). 

  38. Christiaens O , Dzhambazova T , Kostov K , Arpaia S , Joga MR , Urru I et al ., Literature review of baseline information on RNAi to support the environmental risk assessment of RNAi‐based GM plants . EFSA Support Publicat 15 : 1424E ( 2018 ). 

  39. Davalos A , Henriques R , Latasa MJ , Laparra M and Coca M , Literature review of baseline information on non‐coding RNA (ncRNA) to support the risk assessment of ncRNA‐based genetically modified plants for food and feed . EFSA Support Publicat 16 : 1688E ( 2019 ). 

  40. Marrone PG , The market and potential for biopesticides . Europe 12 : 13 – 608 ( 2014 ). 

  41. Marrone PG , Pesticidal natural products?–?status and future potential . Pest Manag Sci ( 2019 ). https://doi.org/10.1002/ps.5433. 

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로