$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Developing a very high-strength low-CO2 cementitious matrix based on a multi-binder approach for structural lightweight aggregate concrete

Construction & building materials, v.234, 2020년, pp.117830 -   

Mena, Jose (Pontificia Universidad Cató) ,  González, Marcelo (lica de Chile, School of Engineering, Department of Construction Engineering and Management) ,  Remesar, José (Pontificia Universidad Cató) ,  C. (lica de Chile, School of Engineering, Department of Construction Engineering and Management) ,  Lopez, Mauricio (HEAT SpA.)

Abstract AI-Helper 아이콘AI-Helper

Abstract Structural lightweight aggregate concrete (LWAC) requires a high-strength cementitious matrix to counteract the low strength of the lightweight aggregates. This article combines synergistic SCMs and optimized mix packing densities to the cementitious matrix to simultaneously achieve high-s...

주제어

참고문헌 (56)

  1. Sustain. Prod. Consum. Mousa 15 131 2018 10.1016/j.spc.2018.06.007 Lightweight concrete in America: presence and challenges 

  2. Constr. Build. Mater. Du 199 696 2019 10.1016/j.conbuildmat.2018.11.225 Properties of ultra-lightweight cement composites with nano-silica 

  3. Int. J. Cem. Compos. Light. Concr. Raithby 3 133 1981 10.1016/0262-5075(81)90007-5 Lightweight concrete in highway bridges 

  4. Constr. Build. Mater. Zhou 198 512 2019 10.1016/j.conbuildmat.2018.11.074 Thermal and mechanical properties of structural lightweight concrete containing lightweight aggregates and fly-ash cenospheres 

  5. Constr. Build. Mater. Remesar 132 353 2017 10.1016/j.conbuildmat.2016.11.116 Assessing and understanding the interaction between mechanical and thermal properties in concrete for developing a structural and insulating material 

  6. Concrete Committee 2014 213, Guide for Structural Lightweight-Aggregate 

  7. ACI Mater. J. Moreno 111 123 2014 Practical approach for assessing lightweight aggregate potential for concrete performance 

  8. UN Environment, IEA, 2018 Global Status Report: Towards a zero-emission, efficient and resilient buildings and construction sector, 2018. http://www.ren21.net/wp-content/uploads/2018/06/17-8652_GSR2018_FullReport_web_final_pdf. 

  9. Cem. Concr. Res. Schneider 41 642 2011 10.1016/j.cemconres.2011.03.019 Sustainable cement production-present and future 

  10. Lea’s Chem. Cem. Concr. Aïtcin 807 2019 10.1016/B978-0-08-100773-0.00017-4 The influence of the water/cement ratio on the sustainability of concrete 

  11. Mehta 2014 Concrete: Microstructure, Properties, and Materials 

  12. Constr. Build. Mater. Hemalatha 191 440 2018 10.1016/j.conbuildmat.2018.09.208 Characterizing supplementary cementing materials in blended mortars 

  13. Cem. Concr. Compos. Zunino 65 19 2016 10.1016/j.cemconcomp.2015.10.003 Decoupling the physical and chemical effects of supplementary cementitious materials on strength and permeability: a multi-level approach 

  14. J. Clean. Prod. Yang 103 774 2015 10.1016/j.jclepro.2014.03.018 Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete 

  15. Constr. Build. Mater. Li 69 1697 2017 A mix-design method for lightweight aggregate self-compacting concrete based on packing and mortar film thickness theories 

  16. Constr. Build. Mater. Kim 36 719 2012 10.1016/j.conbuildmat.2012.06.020 Impacts of metakaolin on lightweight concrete by type of fine aggregate 

  17. Cem. Concr. Res. Juenger 78 71 2015 10.1016/j.cemconres.2015.03.018 Recent advances in understanding the role of supplementary cementitious materials in concrete 

  18. J. Clean. Prod. Oliva 223 1029 2019 10.1016/j.jclepro.2019.03.147 Designing the incineration process for improving the cementitious performance of sewage sludge ash in Portland and blended cement systems 

  19. Ashby 2009 Nanomaterials, Nanotechnologies and Design 

  20. ASTM C618 2013 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use 

  21. Cem. Concr. Compos. Wu 71 97 2016 10.1016/j.cemconcomp.2016.05.005 Influence of silica fume content on microstructure development and bond to steel fiber in ultra-high strength cement-based materials (UHSC) 

  22. Constr. Build. Mater. Flores 146 524 2017 10.1016/j.conbuildmat.2017.04.069 Performance of Portland cement pastes containing nano-silica and different types of silica 

  23. Constr. Build. Mater. da Silva Andrade 159 18 2018 10.1016/j.conbuildmat.2017.10.123 Chemical and mechanical characterization of ternary cement pastes containing metakaolin and nanosilica 

  24. Rev. Ing. Constr. Yanguatin 32 13 2017 10.4067/S0718-50732017000200002 Reactividad puzolánica de arcillas caoliníticasuna revisión 

  25. Constr. Build. Mater. Akcay 185 436 2018 10.1016/j.conbuildmat.2018.07.061 Performance evaluation of silica fume and metakaolin with identical finenesses in self compacting and fiber reinforced concretes 

  26. Transp. Res. Rec. J. Transp. Res. Board Gonzalez 2369 87 2014 10.3141/2369-10 Sound absorption and friction responses of nanoconcrete for rigid pavements 

  27. Int. J. Pavement Eng. Safiuddin 15 940 2014 10.1080/10298436.2014.893327 State-of-the-art report on use of nano-materials in concrete 

  28. Constr. Build. Mater. Paul 189 1019 2018 10.1016/j.conbuildmat.2018.09.062 Properties of cement-based composites using nanoparticles: a comprehensive review 

  29. Cem. Concr. Compos. Rupasinghe 80 17 2017 10.1016/j.cemconcomp.2017.02.011 Investigation of strength and hydration characteristics in nano-silica incorporated cement paste 

  30. Transp. Res. Rec. J. Transp. Res. Board Gonzalez 2441 28 2014 10.3141/2441-05 Nanoconcrete for rigid pavements 

  31. Constr. Build. Mater. Massana 165 93 2018 10.1016/j.conbuildmat.2017.12.100 Influence of nano- and micro-silica additions on the durability of a high-performance self-compacting concrete 

  32. Constr. Build. Mater. Sujjavanich 155 830 2017 10.1016/j.conbuildmat.2017.08.072 Synergistic effect of metakaolin and fly ash on properties of concrete 

  33. Constr. Build. Mater. Li 168 622 2018 10.1016/j.conbuildmat.2018.02.181 Combined usage of micro-silica and nano-silica in concrete: SP demand, cementing efficiencies and synergistic effect 

  34. Cem. Concr. Compos. Radlinski 34 451 2012 10.1016/j.cemconcomp.2011.11.014 Investigation into the synergistic effects in ternary cementitious systems containing Portland cement, fly ash and silica fume 

  35. Constr. Build. Mater. Rong 51 446 2014 10.1016/j.conbuildmat.2013.11.023 Effect of silica fume and fly ash on hydration and microstructure evolution of cement based composites at low water-binder ratios 

  36. Case Stud. Constr. Mater. Nadesan 7 336 2017 Mix design and properties of fly ash waste lightweight aggregates in structural lightweight concrete 

  37. Procedia Eng. Müller 95 290 2014 10.1016/j.proeng.2014.12.189 Design and properties of sustainable concrete 

  38. Constr. Build. Mater. Yu 65 140 2014 10.1016/j.conbuildmat.2014.04.063 Effect of nano-silica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount 

  39. Constr. Build. Mater. Mehdipour 161 340 2018 10.1016/j.conbuildmat.2017.11.147 Understanding the role of particle packing characteristics in rheo-physical properties of cementitious suspensions: a literature review 

  40. Fennis 2011 Design of Ecological Concrete by Particle Packing Optimization 

  41. ASTM C150 2018 Standard Specification for Portland Cement 

  42. J. Clean. Prod. Miller 178 587 2018 10.1016/j.jclepro.2018.01.008 Supplementary cementitious materials to mitigate greenhouse gas emissions from concrete: can there be too much of a good thing? 

  43. J. Clean. Prod. Maddalena 186 933 2018 10.1016/j.jclepro.2018.02.138 Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements 

  44. Mater. Res. Innov. Yu 19 881 2015 10.1179/1432891715Z.0000000001830 Determining the pozzolanic activity component of volcanic rock 

  45. M. Nazmi, Optimierung der Packungsdichte von Korngemischen für Ressourcen effizienten Beton mit Hilfe des Compaction Interaction Packing Model, Technische Universität Graz, 2015. https://diglib.tugraz.at/optimierung-der-packungsdichte-von-korngemischen-fuer-ressourcen-effizienten-beton-mit-hilfe-des-compaction-interaction-packing-model-2015. 

  46. London de Larrard 1999 Concrete mixture proportioning: A scientific approach, E & FN Spon 

  47. G.A. David, Messung der Packungsdichte feiner Kornhaufwerke für Ressourcen-effizienten Beton, Technische Universität Graz, 2014. https://diglib.tugraz.at/messung-der-packungsdichte-feiner-kornhaufwerke-fuer-ressourcen-effizienten-beton-2014. 

  48. ASTM C305 2015 Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars 

  49. ASTM C109 2013 Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or Cube Specimens) 

  50. Cem. Concr. Res. Franke 34 1161 2004 10.1016/j.cemconres.2003.12.003 A new chemical method for analyzing free calcium hydroxide content in cementing material 

  51. Cem. Concr. Res. Ramachandran 1979 10.1016/0008-8846(79)90062-0 Differential thermal method of estimating calcium hydroxide in calcium silicate and cement pastes 

  52. ASTM C1679 2017 Standard Practice for Measuring Hydration Kinetics of Hydraulic Cementitious Mixtures Using Isothermal Calorimetry 

  53. Constr. Build. Mater. Mostofinejad 123 754 2016 10.1016/j.conbuildmat.2016.07.082 Determination of optimized mix design and curing conditions of reactive powder concrete (RPC) 

  54. Cem. Concr. Res. Wilson 91 1 2017 10.1016/j.cemconres.2016.10.004 The micromechanical signature of high-volume natural pozzolan concrete by combined statistical nanoindentation and SEM-EDS analyses 

  55. Constr. Build. Mater. Liu 149 359 2017 10.1016/j.conbuildmat.2017.05.145 Influence of superplasticizer dosage on the viscosity of cement paste with low water-binder ratio 

  56. Cem. Concr. Compos. Damineli 32 555 2010 10.1016/j.cemconcomp.2010.07.009 Measuring the eco-efficiency of cement use 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로