$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Study and design of a lens-type retarding field energy analyzer without a grid electrode

Ultramicroscopy, v.209, 2020년, pp.112880 -   

Hwang, Junhyeok (Advanced Instrumentation, Institute, Korea Research Institute of Standards and Science (KRISS)) ,  Kim, Kwang-Il (Advanced Instrumentation, Institute, Korea Research Institute of Standards and Science (KRISS)) ,  Ogawa, Takashi (Advanced Instrumentation, Institute, Korea Research Institute of Standards and Science (KRISS)) ,  Cho, Boklae (Advanced Instrumentation, Institute, Korea Research Institute of Standards and Science (KRISS)) ,  Kim, Dong-Hyun (Department of Physics, Chungbuk National University) ,  Park, In-Yong (Advanced Instrumentation, Institute, Korea Research Institute of Standards and Science (KRISS))

Abstract AI-Helper 아이콘AI-Helper

Abstract A retarding field energy analyzer (RFEA) for measuring the energy distribution of charged particles offers the advantages of a simple structure and suitability for simultaneous observations of beam patterns in two dimensions. In this study, lens-based RFEAs without a grid electrode were th...

Keyword

참고문헌 (36)

  1. Smith 3 1994 Surf. Anal. By Electron Spectrosc. Surface analysis by electron spectroscopy 

  2. Rev. Sci. Instrum. Simpson 32 1283 1961 10.1063/1.1717235 Design of retarding field energy analyzers 

  3. Rev. Sci. Instrum. Landheer 88 2017 10.1063/1.4986229 Laser-cut molybdenum grids for a retarding field energy analyzer 

  4. J. Phys. D Appl. Phys. Baloniak 43 2010 10.1088/0022-3727/43/5/055203 Calibration of a miniaturized retarding field analyzer for low-temperature plasmas: geometrical transparency and collisional effects 

  5. Rev. Sci. Instrum. Van De Ven 89 2018 10.1063/1.5018269 Analysis of retarding field energy analyzer transmission by simulation of ion trajectories 

  6. Rev. Sci. Instrum. Sharma 86 1 2015 10.1063/1.4934808 Ion angle distribution measurement with a planar retarding field analyzer 

  7. Hawkes 156 2009 

  8. Adv. Mater Li 29 1 2017 10.1002/adma.201770216 Carbon nanotubes as an ultrafast emitter with a narrow energy spread at optical frequency 

  9. Rev. Sci. Instrum. Cui 75 2736 2004 10.1063/1.1777384 Design and operation of a retarding field energy analyzer with variable focusing for space-charge-dominated electron beams 

  10. Rev. Sci. Instrum. Karkare 86 1 2015 10.1063/1.4913655 2-D energy analyzer for low energy electrons 

  11. J. Appl. Phys. Qian 91 462 2002 10.1063/1.1419209 Electron pulse broadening due to space charge effects in a photoelectron gun for electron diffraction and streak camera systems 

  12. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Wang 15 833 1997 10.1116/1.589494 Design optimization for two lens focused ion beam columns 

  13. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Sakaguchi 16 2462 1998 10.1116/1.590191 Focused ion beam optical column design and consideration on minimum attainable beam size 

  14. Ultramicroscopy Frank 62 261 1996 10.1016/0304-3991(95)00156-5 Real image resolution of SEM and low-energy SEM and its optimization: distribution width of the total surface emission 

  15. Rev. Sci. Instrum. Fanelli 86 2015 A versatile retarding potential analyzer for nano-satellite platforms 

  16. Rev. Sci. Instrum. Fang 85 2014 10.1063/1.4856515 Electrode contamination effects of retarding potential analyzer 

  17. J. Vac. Sci. Technol. B Ogawa 36 2018 10.1116/1.5025775 Evaluation of electron optics with an offset cylindrical lens: application to a monochromator or energy analyzer 

  18. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Jansen 3 190 2002 10.1116/1.583223 Energy broadening in electron beams: a comparison of existing theories and Monte Carlo simulation 

  19. J. Appl. Phys. Swanson 51 3453 1980 10.1063/1.328197 Measurement of the energy distribution of a gallium liquid metal ion source 

  20. Phys. Rev. Young 113 115 1959 10.1103/PhysRev.113.115 Experimental measurement of the total-energy distribution of field-emitted electrons 

  21. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Johnson 21 350 2003 10.1116/1.1516180 High-resolution retarding field analyzer 

  22. Rev. Sci. Instrum. Muro 88 2017 10.1063/1.4990769 Wide-angle display-type retarding field analyzer with high energy and angular resolutions 

  23. 10.1063/1.5043317 H. Matsuda, L. Tóth, H. Daimon, acceptance-angle electrostatic lens for two-dimensional angular and energy analysis, 123105 (2018), doi:10.1063/1.5043317. 

  24. Talley 2017 IEDF Distortion and Resolution Considerations for RFEA Operation at High Voltages 

  25. 10.1103/PhysRevC.100.034313 B.P.E. Tee, A.E. Stuchbery, M. Vos, J.T.H. Dowie, B.Q. Lee, M. Alotiby, I. Greguric, T. Kibédi, High-resolution conversion electron spectroscopy of the 125 I electron-capture decay 125 I, 034313 (2019) 1-10. doi:10.1103/PhysRevC.100.034313. 

  26. J. Electron Spectrosc. Relat. Phenom. Went 148 107 2005 10.1016/j.elspec.2005.04.004 Electron-induced kll auger electron spectroscopy of Fe, Cu and Ge 

  27. https://www.scientaomicron.com/en/products/353/1230. 

  28. Rev. Sci. Instrum. Young 39 1477 1968 10.1063/1.1683139 Resolution determination in field emission energy analyzers 

  29. J. Phys. D. Appl. Phys. Adachi 14 769 1981 10.1088/0022-3727/14/5/008 Performance computations for a high-resolution retarding field electron energy analyser with a simple electrode configuration 

  30. P. Lynn, W. Fuerst, Introductory digital signal processing with computer applications, (1998). https://books.google.co.kr/books?hl=ko&lr=&id=IZlxDwAAQBAJ&oi=fnd&pg=PR9&dq=Introductory+digital+signal+processing+with+computer+applications+2nd+edition&ots=5B0XPX6ebG&sig=UIkYwDXW3T96DOTkGqqHdw4xu7c. 

  31. Phys. Rev. Young 113 110 1959 10.1103/PhysRev.113.110 Theoretical total-energy distribution of field-emitted electrons 

  32. 1956 Handbuch Der Physik 

  33. Phys. Rev. Lett. Swanson 16 389 1966 10.1103/PhysRevLett.16.389 Anomalous total energy distribution for a tungsten field emitter 

  34. 10.1201/NOE0750306973 D. Heddle, Electrostatic lens systems, (2000). doi:10.1201/NOE0750306973. 

  35. Phys. Procedia Lencová 1 315 2008 10.1016/j.phpro.2008.07.111 A new program for the design of electron microscopes 

  36. Jpn. J. Appl. Phys. Sakai 24 337 1985 10.1143/JJAP.24.337 An energy resolution formula of a three plane grids retarding field energy analyzer 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로