$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Two-stage cultivation strategy for the improvement of pigment productivity from high-density heterotrophic algal cultures

Bioresource technology : biomass, bioenergy, biowastes, conversion technologies, biotransformations, production technologies, v.302, 2020년, pp.122840 -   

Kim, Urim (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ,  Cho, Dae-Hyun (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ,  Heo, Jina (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ,  Yun, Jin-Ho (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ,  Choi, Dong-Yoon (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ,  Cho, Kichul (Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea) ,  Kim, Hee-Sik (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))

Abstract AI-Helper 아이콘AI-Helper

Abstract Herein, a two-stage cultivation process was devised to overcome low pigment content of algal biomass grown in heterotrophy. Post-treatment conditions (i.e., light intensity, temperature, pH and salinity) were initially tested for dense heterotrophically-grown Chlorella sp. HS2 cultures in ...

Keyword

참고문헌 (49)

  1. Bioresour. Technol. Abreu 118 61 2012 10.1016/j.biortech.2012.05.055 Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source 

  2. Thermochim. Acta Alyabyev 458 65 2007 10.1016/j.tca.2007.03.003 The effect of changes in salinity on the energy yielding processes of Chlorella vulgaris and Dunaliella maritima cells 

  3. 10.3390/en6094607 Ankita Juneja, R.M.C. and G.S.M., 2013. Effects of Environmental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review. energies 6, 4607-4638. https://doi.org/10.3390/en6094607. 

  4. J. Cosmet. Dermatol. Anunciato 11 51 2012 10.1111/j.1473-2165.2011.00600.x Carotenoids and polyphenols in nutricosmetics, nutraceuticals, and cosmeceuticals 

  5. 10.1016/j.jplph.2005.04.006 Backasch, N., Ã, J.A., 2005. Influences on tocopherol biosynthesis in the cyanobacterium Synechocystis sp . PCC 6803. J. Plant Physiol. 162, 758-766. https://doi.org/10.1016/j.jplph.2005.04.006. 

  6. Biotechnol. Rep. J. Benavente-valdés 10 117 2016 Strategies to enhance the production of photosynthetic pigments and lipids in chlorophycae species 

  7. Talanta Bezerra 76 965 2008 10.1016/j.talanta.2008.05.019 Response surface methodology (RSM) as a tool for optimization in analytical chemistry 

  8. Environ. Eng. Res. Bhalamurugan 23 229 2018 10.4491/eer.2017.220 Valuable bioproducts obtained from microalgal biomass and their commercial applications: a review 

  9. J. Biotechnol. Campo 85 289 2001 10.1016/S0168-1656(00)00380-1 Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor 

  10. Trends Biotechnol. Chen 14 421 1996 10.1016/0167-7799(96)10060-3 High cell density culture of microalgae in heterotrophic growth 

  11. Bioresour. Technol. Cho 211 367 2016 10.1016/j.biortech.2016.03.109 Influence of limiting factors on biomass and lipid productivities of axenic Chlorella vulgaris in photobioreactor under chemostat cultivation 

  12. Bioresour. Technol. Cho 281 118 2019 10.1016/j.biortech.2019.02.063 Nitrogen modulation under chemostat cultivation mode induces biomass and lipid production by Chlorella vulgaris and reduces antenna pigment accumulation 

  13. Biotechnol. Biofuels Chokshi 10 1 2017 10.1186/s13068-017-0747-7 Nitrogen starvation-induced cellular crosstalk of ROS-scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga Acutodesmus dimorphus 

  14. Photosynthetica Choudhury 39 481 2001 10.1023/A:1015647708360 Photoinhibition of Photosynthesis: Role of Carotenoids in Photoprotection of Chloroplast Constituents 

  15. Cristiane Alves de Oliveira, Wemerson de Castro Oliveira, Sonia Machado Rocha Ribeiro, Paulo Cesar Stringheta, A.G. do N., 2014. Effect of light intensity on the production of pigments in Nostoc spp. Eur. J. Biol. Med. Sci. Res. 2, 23-36. 

  16. Appl. Microbiol. Biotechnol. Del Campo 64 848 2004 10.1007/s00253-003-1510-5 Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta) 

  17. Int. J. Recycl. Org. Waste Agric. EL-Sheekh 1 1 2012 10.1186/2251-7715-1-12 Mixotrophic and heterotrophic growth of some microalgae using extract of fungal-treated wheat bran 

  18. Bull. Environ. Contam. Toxicol. Fatma 83 509 2009 10.1007/s00128-009-9837-y Screening of Cyanobacteria for Phycobiliproteins and Effect of Different Environmental Stress on Its Yield 

  19. J. Biotechnol. Garc 115 81 2005 10.1016/j.jbiotec.2004.07.010 Production of Dunaliella salina biomass rich in 9- cis - NL -carotene and lutein in a closed tubular photobioreactor 

  20. BBA - Bioenerg. Hakkila 1837 217 2014 10.1016/j.bbabio.2013.11.011 Biochimica et Biophysica Acta Oxidative stress and photoinhibition can be separated in the cyanobacterium Synechocystis sp. PCC 6803 

  21. Algal Res. Heo 2018 10.1016/j.algal.2018.04.029 Indigenous microalga Parachlorella sp. JD-076 as a potential source for lutein production: Optimization of lutein productivity via regulation of light intensity and carbon source 

  22. Biotechnol. Adv. Hu 36 54 2018 10.1016/j.biotechadv.2017.09.009 Heterotrophic cultivation of microalgae for pigment production: a review 

  23. Process Biochem. Ip 40 733 2005 10.1016/j.procbio.2004.01.039 Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark 

  24. Biochim. Biophys. Acta - Bioenerg. Jahns 1817 182 2012 10.1016/j.bbabio.2011.04.012 The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II 

  25. J. Exp. Bot. Krasensky 63 1593 2012 10.1093/jxb/err460 Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks 

  26. Ecotoxicol. Environ. Saf. Larras 98 162 2013 10.1016/j.ecoenv.2013.09.007 The effect of temperature and a herbicide mixture on freshwater periphytic algae 

  27. J. Appl. Phycol. Liu 12 301 2000 10.1023/A:1008185212724 Secondary carotenoids formation by the green alga Chlorococcum sp 

  28. Mar. Drugs Lu 16 2018 10.3390/md16070219 A hetero-photoautotrophic two-stage cultivation process for production of fucoxanthin by the marine diatom Nitzschia laevis 

  29. Brazilian J. Microbiol. Mahmoud 47 298 2016 10.1016/j.bjm.2016.01.003 Role of pH on antioxidants production by Spirulina (Arthrospira) platensis 

  30. FOOD Chem. Toxicol. Mcquistan 50 341 2012 10.1016/j.fct.2011.10.065 Cancer chemoprevention by dietary chlorophylls : A 12, 000-animal dose - dose matrix biomarker and tumor study 

  31. Free Radic. Biol. Med. Mullineaux 122 52 2018 10.1016/j.freeradbiomed.2018.01.033 Free Radical Biology and Medicine ROS-dependent signalling pathways in plants and algae exposed to high light : Comparisons with other eukaryotes 

  32. 10.5772/57353 Paridah, M.., Moradbak, A., Mohamed, A.., Owolabi, F. abdulwahab taiwo, Asniza, M., Abdul Khalid, S.H.., 2016. Synthesis of Antioxidant Carotenoids in Microalgae in Response to Physiological Stress. Intech i, 13. https://doi.org/http://dx.doi.org/10.5772/57353. 

  33. Water Res. Perez-Garcia 45 11 2011 10.1016/j.watres.2010.08.037 Heterotrophic cultures of microalgae: metabolism and potential products 

  34. Autophagy Pérez-Pérez 8 376 2012 10.4161/auto.18864 Carotenoid deficiency triggers autophagy in the model green alga Chlamydomonas reinhardtii 

  35. Essays Biochem. Robinson 59 2015 Correction: enzymes: principles and biotechnological applications 

  36. J. Appl. Phycol. Seyfabadi 23 721 2011 10.1007/s10811-010-9569-8 Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes 

  37. J. Clean. Prod. Shahid 53 310 2013 10.1016/j.jclepro.2013.03.031 Recent advancements in natural dye applications : a review 

  38. J. Bot. Sharma 2012 1 2012 10.1155/2012/217037 Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions 

  39. J. Plant Pathol. Microbiol. Sharma 03 2012 10.4172/2157-7471.1000131 Effects of Culture Conditions on Growth and Biochemical Profile of Chlorella Vulgaris 

  40. Annu. Rev. Food Sci. Technol. Sigurdson 8 261 2017 10.1146/annurev-food-030216-025923 Natural colorants : food colorants from natural sources 

  41. Bacteriol. Rev. Stanier 35 171 1971 10.1128/br.35.2.171-205.1971 Purification and properties of unicellular blue-green algae (order Chroococcales) 

  42. 10.1007/s10753-011-9399-0 Subramoniam, A., Asha, V. V, Nair, S.A., Sasidharan, S.P., Sureshkumar, P.K., Rajendran, K.N., Karunagaran, D., Ramalingam, K., 2012. Chlorophyll Revisited : Anti-in fl ammatory Activities of Chlorophyll a and Inhibition of Expression of TNF- α Gene by the Same 35. https://doi.org/10.1007/s10753-011-9399-0. 

  43. Acta Biochim. Pol. Tominaga 59 43 2012 10.18388/abp.2012_2168 Cosmetic benefits of astaxanthin on humans subjects 

  44. FRIN Tumolo 46 451 2012 Copper chlorophyllin : A food colorant with bioactive properties ? 

  45. Bioresour. Technol. Wang 144 608 2013 10.1016/j.biortech.2013.07.027 Mixotrophic continuous flow cultivation of chlorella protothecoides for lipids 

  46. Ser. C Life Sci. Wei 51 1088 2008 10.1007/s11427-008-0145-2 Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. Sci. China 

  47. J. Appl. Phycol. Wells 29 949 2017 10.1007/s10811-016-0974-5 Algae as nutritional and functional food sources: revisiting our understanding 

  48. Biochem. Eng. J. Yang 6 87 2000 10.1016/S1369-703X(00)00080-2 Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions 

  49. J. Appl.Phycol. Yun 1 2019 Evaluation of the potential of Chlorella sp. HS2, an algal isolate from a tidal rock pool, as an industrial algal crop under a wide range of abiotic conditions 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로