$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Highly Efficient Excitonic Recombination of Non-polar ( [FORMULA OMISSION] ) GaN Nanocrystals for Visible Light Emitter by Hydride Vapour Phase Epitaxy 원문보기

Scientific reports, v.10, 2020년, pp.2076 -   

Lee, Moonsang (Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-Gu Daejeon, 34133 Republic of Korea) ,  Lee, Dongyun (Department of Photonics and Nanoelectronics, Hanyang University, Ansan, 15588 Republic of Korea) ,  Baik, Hionsuck (Seoul Center, Korea Basic Science Institute, 145 Anam-ro, Seongbuk-Gu, Seoul, 02841 Republic of Korea) ,  Kim, Heejin (Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-Gu Daejeon, 34133 Republic of Korea) ,  Jeong, Yesul (Busan Center, Korea Basic Science Institute, 60, Gwahaksandan 1-Ro, Gangseo-Gu, Busan, 46742 Republic of Korea) ,  Yang, Mino (Seoul Center, Korea Basic Science Institute, 145 Anam-ro, Seongbuk-Gu, Seoul, 02841 Republic of Korea) ,  Lee, Hyun Uk (Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-Gu Daejeon, 34133 Republic of Korea) ,  Hahm, Myung Gwan (Department of Materials Science and Engineering, Inha University, 100 Inha-Ro, Michuhol-Gu, Incheon, 22212 Republic of Korea) ,  Kim, Jaekyun (Department of Photonics and Nanoelectronics)

Abstract AI-Helper 아이콘AI-Helper

While non-polar nanostructured-GaN crystals are considered as a prospective material for the realization of futuristic opto-electronic application, the formation of non-polar GaN nanocrystals (NCs) with highly efficient visible emission characteristics remain unquestionable up to now. Here, we repor...

참고문헌 (52)

  1. 1. Kabi S Perera AU Effect of quantum dot size and size distribution on the intersublevel transitions and absorption coefficients of III-V semiconductor quantum dot J. Appl. Phys. 2015 117 124303 10.1063/1.4916372 

  2. 2. Huber D Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots Nat. Commun. 2017 8 15506 10.1038/ncomms15506 28548081 

  3. 3. Yu J Study on spin and optical polarization in a coupled InGaN/GaN quantum well and quantum dots structure Sci. Rep. 2016 6 35597 10.1038/srep35597 27759099 

  4. 4. Yang W High density GaN/AlN quantum dots for deep UV LED with high quantum efficiency and temperature stability Sci. Rep. 2014 4 5166 10.1038/srep05166 24898569 

  5. 5. Hui X Fabrication of GaN nanodots via GaN thermal decomposition in H2 atmosphere J. Vac. Sci. Technol. B. 2013 31 050607 10.1116/1.4819128 

  6. 6. Zhu T Non-polar (11?20) InGaN quantum dots with short exciton lifetimes grown by metal-organic vapor phase epitaxy Appl. Phys. Lett. 2013 102 251905 10.1063/1.4812345 

  7. 7. Saron K Hashim M Broad visible emission from GaN nanowires grown on n-Si (1 1 1) substrate by PVD for solar cell application Superlattices Microstruct. 2013 56 55 63 10.1016/j.spmi.2012.12.020 

  8. 8. Hu C-W Bell A Ponce F Smith D Tsong I Growth of self-assembled GaN quantum dots via the vapor?liquid?solid mechanism Appl. Phys. Lett. 2002 81 3236 3238 10.1063/1.1514394 

  9. 9. Kondo T Saitoh K Yamamoto Y Maruyama T Naritsuka S Fabrication of GaN dot structures on Si substrates by droplet epitaxy phys. stat. sol.(a) 2006 203 1700 1703 10.1002/pssa.200565212 

  10. 10. Yu S Characterization and density control of GaN nanodots on Si (111) by droplet epitaxy using plasma-assisted molecular beam epitaxy Nanoscale Res. Lett. 2014 9 682 10.1186/1556-276X-9-682 25593560 

  11. 11. Zhang J Fabrication of low-density GaN/AlN quantum dots via GaN thermal decomposition in MOCVD Nanoscale Res. Lett. 2014 9 341 10.1186/1556-276X-9-341 25136276 

  12. 12. Qi Z Influence of high-temperature postgrowth annealing under different ambience on GaN quantum dots grown via Ga droplet epitaxy Opt. Mater. Express 2015 5 1598 1605 10.1364/OME.5.001598 

  13. 13. Chen Y Jyoti N Kim J Strong deep-UV and visible luminescence from GaN nanoparticles Appl. Phys. A 2011 102 517 519 10.1007/s00339-010-6179-x 

  14. 14. Griffiths JT Growth of non-polar (11?20) InGaN quantum dots by metal organic vapour phase epitaxy using a two temperature method APL materials 2014 2 126101 10.1063/1.4904068 

  15. 15. Ostapenko IA Large internal dipole moment in InGaN/GaN quantum dots Appl. Phys. Lett. 2010 97 063103 10.1063/1.3477952 

  16. 16. Das A Improved luminescence and thermal stability of semipolar (11?22) InGaN quantum dots Appl. Phys. Lett. 2011 98 201911 10.1063/1.3588335 

  17. 17. Feng S-W Tu L-W Wang H-C Sun Q Han J The role of growth-pressure on the determination of anisotropy properties in nonpolar m-plane GaN. ECS J. Solid State Sci. Technol. 2012 1 R50 R53 10.1149/2.002201jss 

  18. 18. Saleem U Yellow and green luminescence in single-crystal Ge-catalyzed GaN nanowires grown by low pressure chemical vapor deposition Opt. Mater. Express 2017 7 1995 2004 10.1364/OME.7.001995 

  19. 19. Pan X Zhang Z Jia L Li H Xie E Room temperature visible green luminescence from a-GaN: Er film deposited by DC magnetron sputtering J. Alloys Compd. 2008 458 579 582 10.1016/j.jallcom.2007.04.212 

  20. 20. Mitchell B Utilization of native oxygen in Eu (RE)-doped GaN for enabling device compatibility in optoelectronic applications Sci. Rep. 2016 6 18808 10.1038/srep18808 26725651 

  21. 21. Lee, M., Vu, T. K. O., Lee, K. S., Kim, E. K. & Park, S. Electronic Transport Mechanism for Schottky Diodes Formed by Au/HVPE a-Plane GaN Templates Grown via In Situ GaN Nanodot Formation. Nanomaterials 8 (2018). 

  22. 22. Lee M Mikulik D Park S Thick GaN growth via GaN nanodot formation by HVPE Cryst. Eng. Comm. 2017 19 930 935 10.1039/C6CE02125E 

  23. 23. Lee M Yang M Wi J-S Park S Formation of in situ HVPE a-plane GaN nanodots: effects on the structural properties of a-plane GaN templates Cryst. Eng. Comm. 2018 20 4036 4041 10.1039/C8CE00583D 

  24. 24. Craven M Lim S Wu F Speck J DenBaars S Structural characterization of nonpolar (1120) a-plane GaN thin films grown on (1102) r-plane sapphire Appl. Phys. Lett. 2002 81 469 471 10.1063/1.1493220 

  25. 25. Grandjean N Massies J Leroux M Nitridation of sapphire. Effect on the optical properties of GaN epitaxial overlayers Appl. Phys. Lett. 1996 69 2071 2073 10.1063/1.116883 

  26. 26. Huang H-M Growth and Characteristics of a-Plane GaN on ZnO Heterostructure J. Electrochem. Soc. 2012 159 H290 H292 10.1149/2.080203jes 

  27. 27. Li D Selective etching of GaN polar surface in potassium hydroxide solution studied by x-ray photoelectron spectroscopy J. Appl. Phys. 2001 90 4219 4223 10.1063/1.1402966 

  28. 28. Guzman G Herrera M Silva R Vasquez G Maestre D Influence of oxygen incorporation on the defect structure of GaN microrods and nanowires. An XPS and CL study Semicond. Sci. Technol. 2016 31 055006 10.1088/0268-1242/31/5/055006 

  29. 29. Calleja E Yellow luminescence and related deep states in undoped GaN Phys. Rev. B 1997 55 4689 10.1103/PhysRevB.55.4689 

  30. 30. Reshchikov MA Usikov A Helava H Makarov Y Fine structure of the red luminescence band in undoped GaN Appl. Phys. Lett. 2014 104 032103 10.1063/1.4862790 

  31. 31. Wang L Richter E Weyers M Red luminescence from freestanding GaN grown on LiAlO2 substrate by hydride vapor phase epitaxy phys. stat. sol.(a) 2007 204 846 849 10.1002/pssa.200622409 

  32. 32. Wang L Characterization of free standing GaN grown by HVPE on a LiAlO2 substrate phys. stat. sol.(a) 2006 203 1663 1666 10.1002/pssa.200565136 

  33. 33. Elsner J Deep acceptors trapped at threading-edge dislocations in GaN Phys. Rev. B 1998 58 12571 10.1103/PhysRevB.58.12571 

  34. 34. Ravash R Metal organic vapor phase epitaxy growth of single crystalline GaN on planar Si (211) substrates Appl. Phys. Lett. 2009 95 242101 10.1063/1.3272673 

  35. 35. Yang Y Blue luminescence from amorphous GaN nanoparticles synthesized in situ in a polymer Appl. Phys. Lett. 1999 74 2262 2264 10.1063/1.123819 

  36. 36. Leroux M Quantum confined Stark effect due to built-in internal polarization fields in (Al, Ga) N/GaN quantum wells Phys. Rev. B 1998 58 R13371 10.1103/PhysRevB.58.R13371 

  37. 37. Li S Study of the blue luminescence in unintentional doped GaN films grown by MOCVD J. Lumin. 2004 106 219 223 10.1016/j.jlumin.2003.10.003 

  38. 38. Chung S Suh E-K Lee H Mao H Park S Photoluminescence and photocurrent studies of p-type GaN with various thermal treatments J. Cryst. Growth 2002 235 49 54 10.1016/S0022-0248(01)01776-6 

  39. 39. Santana G Photoluminescence study of gallium nitride thin films obtained by infrared close space vapor transport Materials 2013 6 1050 1060 10.3390/ma6031050 28809356 

  40. 40. Gruzintsev A Kaiser U Khodos I Richter W Fine structure of the blue photoluminescence in high-purity hexagonal GaN films Inorg. Mater. 2001 37 591 594 10.1023/A:1017564200275 

  41. 41. Teisseyre H Different character of the donor-acceptor pair-related 3.27 eV band and blue photoluminescence in Mg-doped GaN. Hydrostatic pressure studies Phys. Rev. B 2000 62 10151 10.1103/PhysRevB.62.10151 

  42. 42. Reshchikov MA Visconti P Morkoc H Blue photoluminescence activated by surface states in GaN grown by molecular beam epitaxy Appl. Phys. Lett. 2001 78 177 179 10.1063/1.1338496 

  43. 43. Khromov S Hemmingsson C Monemar B Hultman L Pozina G Optical properties of C-doped bulk GaN wafers grown by halide vapor phase epitaxy J. Appl. Phys. 2014 116 223503 10.1063/1.4903819 

  44. 44. Iwinska M Homoepitaxial growth of HVPE-GaN doped with Si J. Cryst. Growth 2016 456 91 96 10.1016/j.jcrysgro.2016.08.043 

  45. 45. Jindal V Shahedipour-Sandvik F Theoretical prediction of GaN nanostructure equilibrium and nonequilibrium shapes J. Appl. Phys. 2009 106 083115 10.1063/1.3253575 

  46. 46. Lee M Effect of additional hydrochloric acid flow on the growth of non-polar a-plane GaN layers on r-plane sapphire by hydride vapor-phase epitaxy J. Cryst. Growth 2014 404 199 203 10.1016/j.jcrysgro.2014.07.002 

  47. 47. Gong Z Electrical, spectral and optical performance of yellow?green and amber micro-pixelated InGaN light-emitting diodes Semicond. Sci. Technol. 2011 27 015003 10.1088/0268-1242/27/1/015003 

  48. 48. Choi C Time-resolved photoluminescence of In x Ga 1? x N/G a N multiple quantum well structures: Effect of Si doping in the barriers Phys. Rev. B 2001 64 245339 10.1103/PhysRevB.64.245339 

  49. 49. Schulz S O’Reilly EP Built-in field reduction in InGaN/GaN quantum dot molecules Appl. Phys. Lett. 2011 99 223106 10.1063/1.3665069 

  50. 50. Taylor R Dynamics of single InGaN quantum dots Physica E Low Demins. Syst. Nanostruct. 2004 21 285 289 10.1016/j.physe.2003.11.022 

  51. 51. Robinson JW Time-resolved dynamics in single InGaN quantum dots Appl. Phys. Lett. 2003 83 2674 2676 10.1063/1.1614831 

  52. 52. Reid B High temperature stability in non­polar (11$\bar 2 $0) InGaN quantum dots: Exciton and biexciton dynamics physica status solidi (c) 2014 11 702 705 10.1002/pssc.201300666 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로