최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Diabetes, v.69 no.3, 2020년, pp.355 - 368
Kim, Hyunki (1Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea) , Yoon, Byoung-Ha (2Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea) , Oh, Chang-Myung (4Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea) , Lee, Joonyub (1Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea) , Lee, Kanghoon (1Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea) , Song, Heein (1Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea) , Kim, Eunha (5Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea) , Yi, Kijong (1<) , Kim, Mi-Young , Kim, Hyeongseok , Kim, Yong Kyung , Seo, Eun-Hye , Heo, Haejeong , Kim, Hee-Jin , Lee, Junguee , Suh, Jae Myoung , Koo, Seung-Hoi , Seong, Je Kyung , Kim, Seyun , Ju, Young Seok , Shong, Minho , Kim, Mirang , Kim, Hail
Loss of functional β-cell mass is an essential feature of type 2 diabetes, and maintaining mature β-cell identity is important for preserving a functional β-cell mass. However, it is unclear how β-cells achieve and maintain their mature identity. Here we demonstrate a nov...
10.2337/dc14-0396 Halban PA, Polonsky KS, Bowden DW, et al. β-Cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. Diabetes Care 2014;37:1751-1758
J Clin Invest Prentki 116 1802 2006 10.1172/JCI29103 Islet β cell failure in type 2 diabetes
10.2337/diabetes.54.suppl_2.S108 Donath MY, Ehses JA, Maedler K, et al. Mechanisms of β-cell death in type 2 diabetes. Diabetes 2005;54(Suppl. 2):S108-S113
Cell Talchai 150 1223 2012 10.1016/j.cell.2012.07.029 Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure
Diabetes Obes Metab Cigliola 18 87 2016 10.1111/dom.12726 Stress-induced adaptive islet cell identity changes
Diabetologia Nishimura 58 566 2015 10.1007/s00125-014-3464-9 MafA is critical for maintenance of the mature beta cell phenotype in mice
Cell Metab Gu 11 298 2010 10.1016/j.cmet.2010.03.006 Pancreatic β cells require NeuroD to achieve and maintain functional maturity
J Clin Invest Swisa 127 230 2017 10.1172/JCI88015 PAX6 maintains β cell identity by repressing genes of alternative islet cell types
J Clin Invest Ediger 127 215 2017 10.1172/JCI88016 LIM domain-binding 1 maintains the terminally differentiated state of pancreatic β cells
J Clin Invest Gutiérrez 127 244 2017 10.1172/JCI88017 Pancreatic β cell identity requires continual repression of non-β cell programs
Nature Dixon 518 331 2015 10.1038/nature14222 Chromatin architecture reorganization during stem cell differentiation
Nature Ernst 473 43 2011 10.1038/nature09906 Mapping and analysis of chromatin state dynamics in nine human cell types
Trends Endocrinol Metab Campbell 27 142 2016 10.1016/j.tem.2015.12.005 Chromatin regulators in pancreas development and diabetes
Cell Metab Avrahami 22 619 2015 10.1016/j.cmet.2015.07.025 Aging-dependent demethylation of regulatory elements correlates with chromatin state and improved β cell function
Cell Metab Arda 23 909 2016 10.1016/j.cmet.2016.04.002 Age-dependent pancreatic gene regulation reveals mechanisms governing human β cell function
Cell Metab Lu 27 1294 2018 10.1016/j.cmet.2018.04.013 The polycomb-dependent epigenome controls β cell dysfunction, dedifferentiation, and diabetes
FEBS Lett Di Lorenzo 585 2024 2011 10.1016/j.febslet.2010.11.010 Histone arginine methylation
Mol Cell Blanc 65 8 2017 10.1016/j.molcel.2016.11.003 Arginine methylation: the coming of age
10.1530/JME-14-0325 Kim JK, Lim Y, Lee JO, et al. PRMT4 is involved in insulin secretion via methylation of histone H3 in pancreatic β cells. J Mol Endocrinol 2015;54:315-324
J Biol Chem Tang 275 7723 2000 10.1074/jbc.275.11.7723 PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells
Life Sci Iwasaki 85 161 2009 10.1016/j.lfs.2009.05.007 Impaired PRMT1 activity in the liver and pancreas of type 2 diabetic Goto-Kakizaki rats
Science Wang 293 853 2001 10.1126/science.1060781 Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor
Genes Dev Huang 19 1885 2005 10.1101/gad.1333905 Methylation of histone H4 by arginine methyltransferase PRMT1 is essential in vivo for many subsequent histone modifications
Endocrinology Kim 156 444 2015 10.1210/en.2014-1687 Functional role of serotonin in insulin secretion in a diet-induced insulin-resistant state
J Vis Exp Szot 7 255 2007 Murine pancreatic islet isolation
Oncotarget Baek 7 25620 2016 10.18632/oncotarget.8239 Integrated epigenomic analyses of enhancer as well as promoter regions in gastric cancer
Curr Protoc Mol Biol Buenrostro 21.29.1 2015 ATAC-seq: a method for assaying chromatin accessibility genome-wide
Nat Protoc Hagège 2 1722 2007 10.1038/nprot.2007.243 Quantitative analysis of chromosome conformation capture assays (3C-qPCR)
Cell Tang 163 1611 2015 10.1016/j.cell.2015.11.024 CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription
Nat Rev Genet Ong 15 234 2014 10.1038/nrg3663 CTCF: an architectural protein bridging genome topology and function
J Clin Invest Dhawan 125 2851 2015 10.1172/JCI79956 DNA methylation directs functional maturation of pancreatic β cells
Cell Metab Yoshihara 23 622 2016 10.1016/j.cmet.2016.03.005 ERRγ is required for the metabolic maturation of therapeutically functional glucose-responsive β cells
Diabetes Obes Metab Pullen 15 503 2013 10.1111/dom.12029 When less is more: the forbidden fruits of gene repression in the adult β-cell
Diabetologia Marchetti 50 2486 2007 10.1007/s00125-007-0816-8 The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients
Diabetes Metab Res Rev Masini 33 e2894 2017 10.1002/dmrr.2894 Ultrastructural alterations of pancreatic beta cells in human diabetes mellitus
10.2337/diabetes.53.suppl_3.S16 Weir GC, Bonner-Weir S. Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes 2004;53(Suppl. 3):S16-S21
J Clin Invest Guo 123 3305 2013 10.1172/JCI65390 Inactivation of specific β cell transcription factors in type 2 diabetes
J Clin Endocrinol Metab Cinti 101 1044 2016 10.1210/jc.2015-2860 Evidence of β-cell dedifferentiation in human type 2 diabetes
Cell Dowen 159 374 2014 10.1016/j.cell.2014.09.030 Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes
10.2337/db16-1516 Spaeth JM, Gupte M, Perelis M, et al. Defining a novel role for the Pdx1 transcription factor in islet β-cell maturation and proliferation during weaning. Diabetes 2017;66:2830-2839
J Biol Chem Brissova 277 11225 2002 10.1074/jbc.M111272200 Reduction in pancreatic transcription factor PDX-1 impairs glucose-stimulated insulin secretion
Cell Metab Gauthier 10 110 2009 10.1016/j.cmet.2009.07.002 PDX1 deficiency causes mitochondrial dysfunction and defective insulin secretion through TFAM suppression
10.1073/pnas.0914209107 Fujimoto K, Chen Y, Polonsky KS, Dorn GW. Targeting cyclophilin D and the mitochondrial permeability transition enhances β-cell survival and prevents diabetes in Pdx1 deficiency. Proc Natl Acad Sci U S A 2010;107:10214-10219
10.2337/db15-0376 Soleimanpour SA, Ferrari AM, Raum JC, et al. Diabetes susceptibility genes Pdx1 and Clec16a function in a pathway regulating mitophagy in β-cells. Diabetes 2015;64:3475-3484
PLoS Med Wheeler 14 e1002383 2017 10.1371/journal.pmed.1002383 Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: a transethnic genome-wide meta-analysis
Diabetologia Rutter 58 31 2015 10.1007/s00125-014-3405-7 SLC30A8 mutations in type 2 diabetes
Nat Genet Zhao 49 1450 2017 10.1038/ng.3943 Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease
Nat Genet Mahajan 46 234 2014 10.1038/ng.2897 Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility
Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in finns detects multiple susceptibility variants. Science 2007;316:1341-1345
PLoS Genet Tsai 6 e1000847 2010 10.1371/journal.pgen.1000847 A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese
J Clin Endocrinol Metab Brunzell 42 222 1976 10.1210/jcem-42-2-222 Relationships between fasting plasma glucose levels and insulin secretion during intravenous glucose tolerance tests
Mol Cell Yamagata 32 221 2008 10.1016/j.molcel.2008.09.013 Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt
Mol Cell Barrero 24 233 2006 10.1016/j.molcel.2006.09.020 Two functional modes of a nuclear receptor-recruited arginine methyltransferase in transcriptional activation
J Biol Chem Miura 281 5246 2006 10.1074/jbc.M507496200 Hepatocyte nuclear factor-4α is essential for glucose-stimulated insulin secretion by pancreatic β-cells
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.