최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기ACS applied nano materials, v.3 no.2, 2020년, pp.1900 - 1909
You, Youngsang (Department of Biological System Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States) , Lim, Seokwon (Department of Food Science & Technology and Center for Natural Sciences , Hoseo University , Chungnam , S. Korea) , Gunasekaran, Sundaram
The localized surface plasmon resonance (LSPR) effect of aggregating gold nanoparticles (AuNPs) has facilitated the development of colorimetric biosensors that can potentially be employed on site. We have developed an effective strategy to enhance the LSPR color-change signal by decoupling target de...
Zhang, Shaohua, Huang, Qian, Zhang, Lijuan, Zhang, Hao, Han, Yaobao, Sun, Qiao, Cheng, Zhenxiang, Qin, Huizhu, Dou, Shixue, Li, Zhen. Vacancy engineering of Cu2−xSe nanoparticles with tunable LSPR and magnetism for dual-modal imaging guided photothermal therapy of cancer. Nanoscale, vol.10, no.7, 3130-3143.
Kim, Jinwoon, Oh, Seo Yeong, Shukla, Shruti, Hong, Seok Bok, Heo, Nam Su, Bajpai, Vivek.K., Chun, Hyang Sook, Jo, Cheon-Ho, Choi, Bong Gill, Huh, Yun Suk, Han, Young-Kyu. Heteroassembled gold nanoparticles with sandwich-immunoassay LSPR chip format for rapid and sensitive detection of hepatitis B virus surface antigen (HBsAg). Biosensors & bioelectronics, vol.107, 118-122.
Chang, Keke, Wang, Shun, Zhang, Hao, Guo, Qingqian, Hu, Xinran, Lin, Zhili, Sun, Haifeng, Jiang, Min, Hu, Jiandong. Colorimetric detection of melamine in milk by using gold nanoparticles-based LSPR via optical fibers. PloS one, vol.12, no.5, e0177131-.
Jia, Shuo, Bian, Chao, Sun, Jizhou, Tong, Jianhua, Xia, Shanhong. A wavelength-modulated localized surface plasmon resonance (LSPR) optical fiber sensor for sensitive detection of mercury(II) ion by gold nanoparticles-DNA conjugates. Biosensors & bioelectronics, vol.114, 15-21.
Shah, Kruti, Sharma, Navneet K., Sajal, Vivek. Simulation of LSPR based fiber optic sensor utilizing layer of platinum nanoparticles. Optik, vol.154, 530-537.
Guo, L., Jackman, J.A., Yang, H.H., Chen, P., Cho, N.J., Kim, D.H.. Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano today, vol.10, no.2, 213-239.
Sperling, Ralph A., Rivera Gil, Pilar, Zhang, Feng, Zanella, Marco, Parak, Wolfgang J.. Biological applications of gold nanoparticles. Chemical Society reviews, vol.37, no.9, 1896-1908.
Wilson, Robert. The use of gold nanoparticles in diagnostics and detection. Chemical Society reviews, vol.37, no.9, 2028-2045.
Chang, Chia-Chen, Chen, Chen-Yu, Chuang, Tsung-Liang, Wu, Tzu-Heng, Wei, Shu-Chen, Liao, Hongen, Lin, Chii-Wann. Aptamer-based colorimetric detection of proteins using a branched DNA cascade amplification strategy and unmodified gold nanoparticles. Biosensors & bioelectronics, vol.78, 200-205.
Chen, Chaohui, Luo, Ming, Ye, Tai, Li, Ningxing, Ji, Xinghu, He, Zhike. Sensitive colorimetric detection of protein by gold nanoparticles and rolling circle amplification. The Analyst : An International Journal of Analytical and Bioanalytical Science, vol.140, no.13, 4515-4520.
Rosi, N. L., Mirkin, C. A.. Nanostructures in Biodiagnostics. Chemical reviews, vol.105, no.4, 1547-1562.
Xia, Fan, Zuo, Xiaolei, Yang, Renqiang, Xiao, Yi, Kang, Di, Vallée-Bélisle, Alexis, Gong, Xiong, Yuen, Jonathan D., Hsu, Ben B. Y., Heeger, Alan J., Plaxco, Kevin W.. Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proceedings of the National Academy of Sciences of the United States of America, vol.107, no.24, 10837-10841.
Elshafey, R., Tavares, A.C., Siaj, M., Zourob, M.. Electrochemical impedance immunosensor based on gold nanoparticles-protein G for the detection of cancer marker epidermal growth factor receptor in human plasma and brain tissue. Biosensors & bioelectronics, vol.50, 143-149.
Liu, Tao, Zhao, Jing, Zhang, Dongmei, Li, Genxi. Novel Method to Detect DNA Methylation Using Gold Nanoparticles Coupled with Enzyme-Linkage Reactions. Analytical chemistry, vol.82, no.1, 229-233.
Castañeda, M. T., Alegret, S., Merkoçi, A.. Electrochemical Sensing of DNA Using Gold Nanoparticles. Electroanalysis, vol.19, no.7, 743-753.
Sanromán-Iglesias, María, Lawrie, Charles H., Schäfer, Thomas, Grzelczak, Marek, Liz-Marzán, Luis M.. Sensitivity Limit of Nanoparticle Biosensors in the Discrimination of Single Nucleotide Polymorphism. ACS sensors, vol.1, no.9, 1110-1116.
Nehl, C. L., Liao, H., Hafner, J. H.. Optical Properties of Star-Shaped Gold Nanoparticles. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.6, no.4, 683-688.
Dondapati, Srujan K., Sau, Tapan K., Hrelescu, Calin, Klar, Thomas A., Stefani, Fernando D., Feldmann, Jochen. Label-free Biosensing Based on Single Gold Nanostars as Plasmonic Transducers. ACS nano, vol.4, no.11, 6318-6322.
Umar, Aminah, Choi, Sung-Min. Aggregation Behavior of Oppositely Charged Gold Nanorods in Aqueous Solution. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.117, no.22, 11738-11743.
Xu, Liguang, Kuang, Hua, Wang, Libing, Xu, Chuanlai. Gold nanorod ensembles as artificial molecules for applications in sensors. Journal of materials chemistry, vol.21, no.42, 16759-16782.
Gunasekaran, S.; Lim, S. Visible Detection of Microorganisms. US Patent No. 9,851,308 B2, 2017.
Lim, Seokwon, Koo, Ok Kyung, You, Young Sang, Lee, Yeong Eun, Kim, Min-Sik, Chang, Pahn-Shick, Kang, Dong Hyun, Yu, Jae-Hyuk, Choi, Young Jin, Gunasekaran, Sundaram. Enhancing Nanoparticle-Based Visible Detection by Controlling the Extent of Aggregation. Scientific reports, vol.2, 456-.
Luo, H., Huang, Y., Lai, K., Rasco, B.A., Fan, Y.. Surface-enhanced Raman spectroscopy coupled with gold nanoparticles for rapid detection of phosmet and thiabendazole residues in apples. Food control, vol.68, 229-235.
Truong, Phuoc Long, Ma, Xingyi, Sim, Sang Jun. Resonant Rayleigh light scattering of single Au nanoparticles with different sizes and shapes. Nanoscale, vol.6, no.4, 2307-.
Ji, Y., Ren, M., Li, Y., Huang, Z., Shu, M., Yang, H., Xiong, Y., Xu, Y.. Detection of aflatoxin B1 with immunochromatographic test strips: Enhanced signal sensitivity using gold nanoflowers. Talanta, vol.142, 206-212.
You, Youngsang, Lim, Seokwon, Hahn, Jungwoo, Choi, Young Jin, Gunasekaran, Sundaram. Bifunctional linker-based immunosensing for rapid and visible detection of bacteria in real matrices. Biosensors & bioelectronics, vol.100, 389-395.
Hahn, Jungwoo, Kim, Eunghee, You, Young Sang, Gunasekaran, Sundaram, Lim, Seokwon, Choi, Young Jin. A Switchable Linker‐Based Immunoassay for Ultrasensitive Visible Detection of Salmonella in Tomatoes. Journal of food science : an official publication of the Institute of Food Technologists, vol.82, no.10, 2321-2328.
Zuber, Agnieszka, Purdey, Malcolm, Schartner, Erik, Forbes, Caroline, van der Hoek, Benjamin, Giles, David, Abell, Andrew, Monro, Tanya, Ebendorff-Heidepriem, Heike. Detection of gold nanoparticles with different sizes using absorption and fluorescence based method. Sensors and actuators. B, Chemical, vol.227, 117-127.
Jain, P. K., Lee, K. S., El-Sayed, I. H., El-Sayed, M. A.. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.110, no.14, 7238-7248.
Daniel, M.-C., Astruc, D.. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chemical reviews, vol.104, no.1, 293-346.
Ji, X., Song, X., Li, J., Bai, Y., Yang, W., Peng, X.. Size Control of Gold Nanocrystals in Citrate Reduction: The Third Role of Citrate. Journal of the American Chemical Society, vol.129, no.45, 13939-13948.
10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F
Perrault, Steven D., Chan, Warren C. W.. Synthesis and Surface Modification of Highly Monodispersed, Spherical Gold Nanoparticles of 50−200 nm. Journal of the American Chemical Society, vol.131, no.47, 17042-17043.
Brown, K. R., Walter, D. G., Natan, M. J.. Seeding of Colloidal Au Nanoparticle Solutions. 2. Improved Control of Particle Size and Shape. Chemistry of materials : a publication of the American Chemical Society, vol.12, no.2, 306-313.
Turkevich, John, Stevenson, Peter Cooper, Hillier, James. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, vol.11, 55-75.
Yang, J.; Lee, J. Y.; Deivaraj, T. C.; Too, H.P. Single Stranded DNA Induced Assembly of Gold Nanoparticles, 2004.
FRENS, G.. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nature: physical science, vol.241, no.105, 20-22.
Park, Jongnam, Joo, Jin, Kwon, Soon Gu, Jang, Youngjin, Hyeon, Taeghwan. Synthesis of Monodisperse Spherical Nanocrystals. Angewandte Chemie. international edition, vol.46, no.25, 4630-4660.
Jana, N. R., Gearheart, L., Murphy, C. J.. Seeding Growth for Size Control of 5−40 nm Diameter Gold Nanoparticles. Langmuir : the ACS journal of surfaces and colloids, vol.17, no.22, 6782-6786.
Grabar, Katherine C., Freeman, R. Griffith., Hommer, Michael B., Natan, Michael J.. Preparation and Characterization of Au Colloid Monolayers. Analytical chemistry, vol.67, no.4, 735-743.
Haiss, W., Thanh, N. T. K., Aveyard, J., Fernig, D. G.. Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra. Analytical chemistry, vol.79, no.11, 4215-4221.
Nath, N., Chilkoti, A.. A Colorimetric Gold Nanoparticle Sensor To Interrogate Biomolecular Interactions in Real Time on a Surface. Analytical chemistry, vol.74, no.3, 504-509.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.