최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기ACS catalysis, v.10, 2020년, pp.3720 - 3732
Valekar, Anil H. (Research Center for Nanocatalysts , Korea Research Institute of Chemical Technology , Daejeon 34114 , Korea) , Lee, Minhui (Department of Chemistry , University of Ulsan , Ulsan 44776 , Republic of Korea) , Yoon, Ji Woong (Research Center for Nanocatalysts , Korea Research Institute of Chemical Technology , Daejeon 34114 , Korea) , Kwak, Jaesung (Research Center for Nanocatalysts , Korea Research Institute of Chemical Technology , Daejeon 34114 , Korea) , Hong, Do-Young (Research Center for Nanocatalysts , Korea Research Institute of Chemical Technology , Daejeon 34114 , Korea) , Oh, Kyung-Ryul (Research Center for Nanocatalysts , Korea Research Institute of Chemical Technology , Daejeon 34114 , Korea) , Cha, Ga-Young (Research Center for Nanocatalysts , Korea Research Institute of Chemical Technology , Daejeon 34114 , Korea) , Kwon, Young-Uk (Department of Chemistry , Sungkyunkwan University , Suwon 16419) , Jung, Jaehoon , Chang, Jong-San , Hwang, Young Kyu
The catalytic transfer hydrogenation (CTH) reaction is considered as a potential route for upgrading bio-based carbonyls to their corresponding alcohols. Herein, a series of Zr-based metal−organic frameworks (Zr-MOFs) containing various types of metal node to ligand coordinations were synthes...
Mariscal, R., Maireles-Torres, P., Ojeda, M., Sádaba, I., López Granados, M.. Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy & environmental science, vol.9, no.4, 1144-1189.
Assary, Rajeev S., Curtiss, Larry A., Dumesic, James A.. Exploring Meerwein–Ponndorf–Verley Reduction Chemistry for Biomass Catalysis Using a First-Principles Approach. ACS catalysis, vol.3, no.12, 2694-2704.
Gilkey, Matthew J., Xu, Bingjun. Heterogeneous Catalytic Transfer Hydrogenation as an Effective Pathway in Biomass Upgrading. ACS catalysis, vol.6, no.3, 1420-1436.
Neeli, Chinna Krishna Prasad, Chung, Young‐Min, Ahn, Wha‐Seung. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol by using Ultrasmall Rh Nanoparticles Embedded on Diamine‐Functionalized KIT‐6. ChemCatChem, vol.9, no.24, 4570-4579.
Panagiotopoulou, P., Vlachos, D.G.. Liquid phase catalytic transfer hydrogenation of furfural over a Ru/C catalyst. Applied catalysis. A, General, vol.480, 17-24.
Panagiotopoulou, P., Martin, N., Vlachos, D.G.. Effect of hydrogen donor on liquid phase catalytic transfer hydrogenation of furfural over a Ru/RuO2/C catalyst. Journal of molecular catalysis. A, Chemical, vol.392, 223-228.
Gilkey, Matthew J., Panagiotopoulou, Paraskevi, Mironenko, Alexander V., Jenness, Glen R., Vlachos, Dionisios G., Xu, Bingjun. Mechanistic Insights into Metal Lewis Acid-Mediated Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran. ACS catalysis, vol.5, no.7, 3988-3994.
Koehle, Maura, Lobo, Raul F.. Lewis acidic zeolite Beta catalyst for the Meerwein-Ponndorf-Verley reduction of furfural. Catalysis science & technology, vol.6, no.9, 3018-3026.
Antunes, M.M., Lima, S., Neves, P., Magalhaes, A.L., Fazio, E., Fernandes, A., Neri, F., Silva, C.M., Rocha, S.M., Ribeiro, M.F., Pillinger, M., Urakawa, A., Valente, A.A.. One-pot conversion of furfural to useful bio-products in the presence of a Sn,Al-containing zeolite beta catalyst prepared via post-synthesis routes. Journal of catalysis, vol.329, 522-537.
Bui, Linh, Luo, Helen, Gunther, William R., Román‐Leshkov, Yuriy. Domino Reaction Catalyzed by Zeolites with Brønsted and Lewis Acid Sites for the Production of γ‐Valerolactone from Furfural. Angewandte Chemie. international edition, vol.52, no.31, 8022-8025.
Li, Jiang, Liu, Jun‐ling, Zhou, Hong‐jun, Fu, Yao. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol over Nitrogen‐Doped Carbon‐Supported Iron Catalysts. ChemSusChem, vol.9, no.11, 1339-1347.
Wang, Fan, Zhang, Zehui. Catalytic Transfer Hydrogenation of Furfural into Furfuryl Alcohol over Magnetic γ-Fe2O3@HAP Catalyst. ACS sustainable chemistry et engineering, vol.5, no.1, 942-947.
Chia, Mei, Dumesic, James A.. Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts. Chemical communications : Chem comm, vol.47, no.44, 12233-12235.
Tang, X., Chen, H., Hu, L., Hao, W., Sun, Y., Zeng, X., Lin, L., Liu, S.. Conversion of biomass to γ-valerolactone by catalytic transfer hydrogenation of ethyl levulinate over metal hydroxides. Applied catalysis. B, Environmental, vol.147, 827-834.
Song, Jinliang, Zhou, Baowen, Zhou, Huacong, Wu, Lingqiao, Meng, Qinglei, Liu, Zhimin, Han, Buxing. Porous Zirconium–Phytic Acid Hybrid: a Highly Efficient Catalyst for Meerwein–Ponndorf–Verley Reductions. Angewandte Chemie. international edition, vol.54, no.32, 9399-9403.
Li, Hu, He, Jian, Riisager, Anders, Saravanamurugan, Shunmugavel, Song, Baoan, Yang, Song. Acid–Base Bifunctional Zirconium N-Alkyltriphosphate Nanohybrid for Hydrogen Transfer of Biomass-Derived Carboxides. ACS catalysis, vol.6, no.11, 7722-7727.
Li, Hu, Liu, Xiaofang, Yang, Tingting, Zhao, Wenfeng, Saravanamurugan, Shunmugavel, Yang, Song. Porous Zirconium-Furandicarboxylate Microspheres for Efficient Redox Conversion of Biofuranics. ChemSusChem, vol.10, no.8, 1761-1770.
Li, Hu, Fang, Zhen, He, Jian, Yang, Song. Orderly Layered Zr‐Benzylphosphonate Nanohybrids for Efficient Acid-Base‐Mediated Bifunctional/Cascade Catalysis. ChemSusChem, vol.10, no.4, 681-686.
Iglesias, Jose, Melero, Juan, Morales, Gabriel, Moreno, Jovita, Segura, Yolanda, Paniagua, Marta, Cambra, Alberto, Hernández, Blanca. Zr-SBA-15 Lewis Acid Catalyst: Activity in Meerwein Ponndorf Verley Reduction. Catalysts, vol.5, no.4, 1911-1927.
Montes, V., Miñambres, J.F., Khalilov, A.N., Boutonnet, M., Marinas, J.M., Urbano, F.J., Maharramov, A.M., Marinas, A.. Chemoselective hydrogenation of furfural to furfuryl alcohol on ZrO2 systems synthesized through the microemulsion method. Catalysis today, vol.306, 89-95.
Vermoortele, Frederik, Bueken, Bart, Le Bars, Gaëlle, Van de Voorde, Ben, Vandichel, Matthias, Houthoofd, Kristof, Vimont, Alexandre, Daturi, Marco, Waroquier, Michel, Van Speybroeck, Veronique, Kirschhock, Christine, De Vos, Dirk E.. Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, vol.135, no.31, 11465-11468.
Plessers, E., De Vos, D.E., Roeffaers, M.B.J.. Chemoselective reduction of α,β-unsaturated carbonyl compounds with UiO-66 materials. Journal of catalysis, vol.340, 136-143.
Plessers, Eva, Fu, Guangxia, Tan, Collin, De Vos, Dirk, Roeffaers, Maarten. Zr-Based MOF-808 as Meerwein-Ponndorf-Verley Reduction Catalyst for Challenging Carbonyl Compounds. Catalysts, vol.6, no.7, 104-.
Valekar, Anil H., Cho, Kyung-Ho, Chitale, Sachin K., Hong, Do-Young, Cha, Ga-Young, Lee, U-Hwang, Hwang, Dong Won, Serre, Christian, Chang, Jong-San, Hwang, Young Kyu. Catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over zirconium-based metal–organic frameworks. Green chemistry : an international journal and green chemistry resource : GC, vol.18, no.16, 4542-4552.
He, Jian, Li, Hu, Riisager, Anders, Yang, Song. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol with Recyclable Al-Zr@Fe Mixed Oxides. ChemCatChem, vol.10, no.2, 430-438.
He, Jian, Schill, Leonhard, Yang, Song, Riisager, Anders. Catalytic Transfer Hydrogenation of Bio-Based Furfural with NiO Nanoparticles. ACS sustainable chemistry et engineering, vol.6, no.12, 17220-17229.
Zhang, Jun, Dong, Kaijun, Luo, Weimin, Guan, Haifeng. Selective Transfer Hydrogenation of Furfural into Furfuryl Alcohol on Zr-Containing Catalysts Using Lower Alcohols as Hydrogen Donors. ACS omega, vol.3, no.6, 6206-6216.
Hao, Weiwei, Li, Weifeng, Tang, Xing, Zeng, Xianhai, Sun, Yong, Liu, Shijie, Lin, Lu. Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethyl furfural to the building block 2,5-bishydroxymethyl furan. Green chemistry : an international journal and green chemistry resource : GC, vol.18, no.4, 1080-1088.
Zhou, Shenghui, Dai, Fanglin, Xiang, Zhouyang, Song, Tao, Liu, Detao, Lu, Fachuang, Qi, Haisong. Zirconium–lignosulfonate polyphenolic polymer for highly efficient hydrogen transfer of biomass-derived oxygenates under mild conditions. Applied catalysis. B, Environmental, vol.248, 31-43.
Wang, Ruiying, Wang, Jianjia, Zi, Huimin, Wang, Haijun, Xia, Yongmei, Liu, Xiang. Conversion of ethyl levulinate to γ‐valerolactone catalyzed by the new Zr‐containing organic-inorganic hybrid catalysts. Journal of the Chinese Chemical Society = 中國化學會會誌, vol.65, no.11, 1398-1406.
López-Asensio, Raquel, Jiménez Gómez, Carmen Pilar, García Sancho, Cristina, Moreno-Tost, Ramón, Cecilia, Juan Antonio, Maireles-Torres, Pedro. Influence of Structure-modifying Agents in the Synthesis of Zr-doped SBA-15 Silica and Their Use as Catalysts in the Furfural Hydrogenation to Obtain High Value-added Products through the Meerwein-Ponndorf-Verley Reduction. International journal of molecular sciences, vol.20, no.4, 828-.
Gong, Wanbing, Chen, Chun, Fan, Ruoyu, Zhang, Haimin, Wang, Guozhong, Zhao, Huijun. Transfer-hydrogenation of furfural and levulinic acid over supported copper catalyst. Fuel, vol.231, 165-171.
Villaverde, M.M., Garetto, T.F., Marchi, A.J.. Liquid-phase transfer hydrogenation of furfural to furfuryl alcohol on Cu-Mg-Al catalysts. Catalysis communications, vol.58, 6-10.
Xu, Shaodan, Yu, Deqing, Ye, Tao, Tian, Panpan. Catalytic transfer hydrogenation of levulinic acid to γ-valerolactone over a bifunctional tin catalyst. RSC advances, vol.7, no.2, 1026-1031.
Rani, Poonam, Srivastava, Rajendra. Integration of a metal-organic framework with zeolite: a highly sustainable composite catalyst for the synthesis of γ-valerolactone and coumarins. Sustainable energy & fuels, vol.2, no.6, 1287-1298.
Zhu, Yongzhong, Chuah, Gaik-Khuan, Jaenicke, Stephan. Selective Meerwein–Ponndorf–Verley reduction of α,β-unsaturated aldehydes over Zr-zeolite beta. Journal of catalysis, vol.241, no.1, 25-33.
Rojas‐Buzo, Sergio, García‐García, Pilar, Corma, Avelino. Catalytic Transfer Hydrogenation of Biomass‐Derived Carbonyls over Hafnium‐Based Metal-Organic Frameworks. ChemSusChem, vol.11, no.2, 432-438.
Kurisingal, Jintu Francis, Rachuri, Yadagiri, Palakkal, Athulya S., Pillai, Renjith S., Gu, Yunjang, Choe, Youngson, Park, Dae-Won. Water-Tolerant DUT-Series Metal-Organic Frameworks: A Theoretical-Experimental Study for the Chemical Fixation of CO2 and Catalytic Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone. ACS applied materials & interfaces, vol.11, no.44, 41458-41471.
Chen, Xiufang, Zhang, Ligang, Zhang, Bo, Guo, Xingcui, Mu, Xindong. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water. Scientific reports, vol.6, 28558-28558.
Yuan, Q., Zhang, D., Haandel, L.v., Ye, F., Xue, T., Hensen, E.J., Guan, Y.. Selective liquid phase hydrogenation of furfural to furfuryl alcohol by Ru/Zr-MOFs. Journal of molecular catalysis. A, Chemical, vol.406, 58-64.
Wang, Guimei, Yao, Ruihua, Xin, Huiyue, Guan, Yejun, Wu, Peng, Li, Xiaohong. At room temperature in water: efficient hydrogenation of furfural to furfuryl alcohol with a Pt/SiC–C catalyst. RSC advances, vol.8, no.65, 37243-37253.
Xiao, Chaoxian, Goh, Tian-Wei, Qi, Zhiyuan, Goes, Shannon, Brashler, Kyle, Perez, Christopher, Huang, Wenyu. Conversion of Levulinic Acid to γ-Valerolactone over Few-Layer Graphene-Supported Ruthenium Catalysts. ACS catalysis, vol.6, no.2, 593-599.
Tan, Jingjing, Cui, Jinglei, Zhu, Yulei, Cui, Xiaojing, Shi, Yun, Yan, Wenjun, Zhao, Yongxiang. Complete Aqueous Hydrogenation of 5-Hydroxymethylfurfural at Room Temperature over Bimetallic RuPd/Graphene Catalyst. ACS sustainable chemistry et engineering, vol.7, no.12, 10670-10678.
Bai, Yan, Dou, Yibo, Xie, Lin-Hua, Rutledge, William, Li, Jian-Rong, Zhou, Hong-Cai. Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chemical Society reviews, vol.45, no.8, 2327-2367.
Liu, Yangyang, Klet, Rachel C., Hupp, Joseph T., Farha, Omar. Probing the correlations between the defects in metal–organic frameworks and their catalytic activity by an epoxide ring-opening reaction. Chemical communications : Chem comm, vol.52, no.50, 7806-7809.
Rimoldi, Martino, Howarth, Ashlee J., DeStefano, Matthew R., Lin, Lu, Goswami, Subhadip, Li, Peng, Hupp, Joseph T., Farha, Omar K.. Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks. ACS catalysis, vol.7, no.2, 997-1014.
Salomon, William, Roch-Marchal, Catherine, Mialane, Pierre, Rouschmeyer, Paul, Serre, Christian, Haouas, Mohamed, Taulelle, Francis, Yang, Shu, Ruhlmann, Laurent, Dolbecq, Anne. Immobilization of polyoxometalates in the Zr-based metal organic framework UiO-67. Chemical communications : Chem comm, vol.51, no.14, 2972-2975.
Bon, Volodymyr, Senkovska, Irena, Weiss, Manfred S., Kaskel, Stefan. Tailoring of network dimensionality and porosity adjustment in Zr- and Hf-based MOFs. CrystEngComm, vol.15, no.45, 9572-9577.
Bon, Volodymyr, Senkovska, Irena, Baburin, Igor A., Kaskel, Stefan. Zr- and Hf-Based Metal–Organic Frameworks: Tracking Down the Polymorphism. Crystal growth & design, vol.13, no.3, 1231-1237.
Furukawa, Hiroyasu, Gándara, Felipe, Zhang, Yue-Biao, Jiang, Juncong, Queen, Wendy L., Hudson, Matthew R., Yaghi, Omar M.. Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. Journal of the American Chemical Society, vol.136, no.11, 4369-4381.
Jung, Kwang-Deog, Bell, Alexis T.. Role of Hydrogen Spillover in Methanol Synthesis over Cu/ZrO2. Journal of catalysis, vol.193, no.2, 207-223.
Rhodes, Michael D., Pokrovski, Konstantin A., Bell, Alexis T.. The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts : Part II. Transient-response infrared studies. Journal of catalysis, vol.233, no.1, 210-220.
Yang, Dong, Bernales, Varinia, Islamoglu, Timur, Farha, Omar K., Hupp, Joseph T., Cramer, Christopher J., Gagliardi, Laura, Gates, Bruce C.. Tuning the Surface Chemistry of Metal Organic Framework Nodes: Proton Topology of the Metal-Oxide-Like Zr6 Nodes of UiO-66 and NU-1000. Journal of the American Chemical Society, vol.138, no.46, 15189-15196.
Ouyang, Feng, N. Kondo, Junko, Maruya, Ken-ichi, Domen, Kazunari. IR study on H/D isotope exchange reactions of formate and methoxy species with D2 on ZrO2. Journal of the Chemical Society. Faraday transactions, vol.93, no.1, 169-174.
Planas, Nora, Mondloch, Joseph E., Tussupbayev, Samat, Borycz, Joshua, Gagliardi, Laura, Hupp, Joseph T., Farha, Omar K., Cramer, Christopher J.. Defining the Proton Topology of the Zr6-Based Metal–Organic Framework NU-1000. The journal of physical chemistry letters, vol.5, no.21, 3716-3723.
Deria, Pravas, Bury, Wojciech, Hod, Idan, Kung, Chung-Wei, Karagiaridi, Olga, Hupp, Joseph T., Farha, Omar K.. MOF Functionalization via Solvent-Assisted Ligand Incorporation: Phosphonates vs Carboxylates. Inorganic chemistry, vol.54, no.5, 2185-2192.
Vimont, A., Goupil, J.-M., Lavalley, J.-C., Daturi, M., Surble, S., Serre, C., Millange, F., Ferey, G., Audebrand, N.. Investigation of Acid Sites in a Zeotypic Giant Pores Chromium(III) Carboxylate. Journal of the American Chemical Society, vol.128, no.10, 3218-3227.
Mautschke, H.-H., Drache, F., Senkovska, I., Kaskel, S., Llabrés i Xamena, F. X.. Catalytic properties of pristine and defect-engineered Zr-MOF-808 metal organic frameworks. Catalysis science & technology, vol.8, no.14, 3610-3616.
Driscoll, Darren M., Troya, Diego, Usov, Pavel M., Maynes, Andrew J., Morris, Amanda J., Morris, John R.. Characterization of Undercoordinated Zr Defect Sites in UiO-66 with Vibrational Spectroscopy of Adsorbed CO. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.122, no.26, 14582-14589.
Fang, H., Xia, J., Zhu, K., Su, Y., Jiang, Y.. Industrial waste heat utilization for low temperature district heating. Energy policy, vol.62, 236-246.
Ammar, Yasmine, Joyce, Sharon, Norman, Rosemary, Wang, Yaodong, Roskilly, Anthony P.. Low grade thermal energy sources and uses from the process industry in the UK. Applied energy, vol.89, no.1, 3-20.
Zhou, Shenghui, Dai, Fanglin, Xiang, Zhouyang, Song, Tao, Liu, Detao, Lu, Fachuang, Qi, Haisong. Zirconium–lignosulfonate polyphenolic polymer for highly efficient hydrogen transfer of biomass-derived oxygenates under mild conditions. Applied catalysis. B, Environmental, vol.248, 31-43.
Tang, Xing, Hu, Lei, Sun, Yong, Zhao, Geng, Hao, Weiwei, Lin, Lu. Conversion of biomass-derived ethyl levulinate into γ-valerolactone via hydrogen transfer from supercritical ethanol over a ZrO2 catalyst. RSC advances, vol.3, no.26, 10277-.
Gonell, Francisco, Boronat, Mercedes, Corma, Avelino. Structure-reactivity relationship in isolated Zr sites present in Zr-zeolite and ZrO2 for the Meerwein-Ponndorf-Verley reaction. Catalysis science & technology, vol.7, no.13, 2865-2873.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.