$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol under Mild Conditions over Zr-MOFs: Exploring the Role of Metal Node Coordination and Modification

ACS catalysis, v.10, 2020년, pp.3720 - 3732  

Valekar, Anil H. (Research Center for Nanocatalysts , Korea Research Institute of Chemical Technology , Daejeon 34114 , Korea) ,  Lee, Minhui (Department of Chemistry , University of Ulsan , Ulsan 44776 , Republic of Korea) ,  Yoon, Ji Woong (Research Center for Nanocatalysts , Korea Research Institute of Chemical Technology , Daejeon 34114 , Korea) ,  Kwak, Jaesung (Research Center for Nanocatalysts , Korea Research Institute of Chemical Technology , Daejeon 34114 , Korea) ,  Hong, Do-Young (Research Center for Nanocatalysts , Korea Research Institute of Chemical Technology , Daejeon 34114 , Korea) ,  Oh, Kyung-Ryul (Research Center for Nanocatalysts , Korea Research Institute of Chemical Technology , Daejeon 34114 , Korea) ,  Cha, Ga-Young (Research Center for Nanocatalysts , Korea Research Institute of Chemical Technology , Daejeon 34114 , Korea) ,  Kwon, Young-Uk (Department of Chemistry , Sungkyunkwan University , Suwon 16419) ,  Jung, Jaehoon ,  Chang, Jong-San ,  Hwang, Young Kyu

Abstract AI-Helper 아이콘AI-Helper

The catalytic transfer hydrogenation (CTH) reaction is considered as a potential route for upgrading bio-based carbonyls to their corresponding alcohols. Herein, a series of Zr-based metal−organic frameworks (Zr-MOFs) containing various types of metal node to ligand coordinations were synthes...

Keyword

참고문헌 (65)

  1. Mariscal, R., Maireles-Torres, P., Ojeda, M., Sádaba, I., López Granados, M.. Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy & environmental science, vol.9, no.4, 1144-1189.

  2. Assary, Rajeev S., Curtiss, Larry A., Dumesic, James A.. Exploring Meerwein–Ponndorf–Verley Reduction Chemistry for Biomass Catalysis Using a First-Principles Approach. ACS catalysis, vol.3, no.12, 2694-2704.

  3. Gilkey, Matthew J., Xu, Bingjun. Heterogeneous Catalytic Transfer Hydrogenation as an Effective Pathway in Biomass Upgrading. ACS catalysis, vol.6, no.3, 1420-1436.

  4. Neeli, Chinna Krishna Prasad, Chung, Young‐Min, Ahn, Wha‐Seung. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol by using Ultrasmall Rh Nanoparticles Embedded on Diamine‐Functionalized KIT‐6. ChemCatChem, vol.9, no.24, 4570-4579.

  5. Panagiotopoulou, P., Vlachos, D.G.. Liquid phase catalytic transfer hydrogenation of furfural over a Ru/C catalyst. Applied catalysis. A, General, vol.480, 17-24.

  6. Panagiotopoulou, P., Martin, N., Vlachos, D.G.. Effect of hydrogen donor on liquid phase catalytic transfer hydrogenation of furfural over a Ru/RuO2/C catalyst. Journal of molecular catalysis. A, Chemical, vol.392, 223-228.

  7. Gilkey, Matthew J., Panagiotopoulou, Paraskevi, Mironenko, Alexander V., Jenness, Glen R., Vlachos, Dionisios G., Xu, Bingjun. Mechanistic Insights into Metal Lewis Acid-Mediated Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran. ACS catalysis, vol.5, no.7, 3988-3994.

  8. Koehle, Maura, Lobo, Raul F.. Lewis acidic zeolite Beta catalyst for the Meerwein-Ponndorf-Verley reduction of furfural. Catalysis science & technology, vol.6, no.9, 3018-3026.

  9. Antunes, M.M., Lima, S., Neves, P., Magalhaes, A.L., Fazio, E., Fernandes, A., Neri, F., Silva, C.M., Rocha, S.M., Ribeiro, M.F., Pillinger, M., Urakawa, A., Valente, A.A.. One-pot conversion of furfural to useful bio-products in the presence of a Sn,Al-containing zeolite beta catalyst prepared via post-synthesis routes. Journal of catalysis, vol.329, 522-537.

  10. Bui, Linh, Luo, Helen, Gunther, William R., Román‐Leshkov, Yuriy. Domino Reaction Catalyzed by Zeolites with Brønsted and Lewis Acid Sites for the Production of γ‐Valerolactone from Furfural. Angewandte Chemie. international edition, vol.52, no.31, 8022-8025.

  11. Li, Jiang, Liu, Jun‐ling, Zhou, Hong‐jun, Fu, Yao. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol over Nitrogen‐Doped Carbon‐Supported Iron Catalysts. ChemSusChem, vol.9, no.11, 1339-1347.

  12. Wang, Fan, Zhang, Zehui. Catalytic Transfer Hydrogenation of Furfural into Furfuryl Alcohol over Magnetic γ-Fe2O3@HAP Catalyst. ACS sustainable chemistry et engineering, vol.5, no.1, 942-947.

  13. Chia, Mei, Dumesic, James A.. Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts. Chemical communications : Chem comm, vol.47, no.44, 12233-12235.

  14. Tang, X., Chen, H., Hu, L., Hao, W., Sun, Y., Zeng, X., Lin, L., Liu, S.. Conversion of biomass to γ-valerolactone by catalytic transfer hydrogenation of ethyl levulinate over metal hydroxides. Applied catalysis. B, Environmental, vol.147, 827-834.

  15. Song, Jinliang, Zhou, Baowen, Zhou, Huacong, Wu, Lingqiao, Meng, Qinglei, Liu, Zhimin, Han, Buxing. Porous Zirconium–Phytic Acid Hybrid: a Highly Efficient Catalyst for Meerwein–Ponndorf–Verley Reductions. Angewandte Chemie. international edition, vol.54, no.32, 9399-9403.

  16. Li, Hu, He, Jian, Riisager, Anders, Saravanamurugan, Shunmugavel, Song, Baoan, Yang, Song. Acid–Base Bifunctional Zirconium N-Alkyltriphosphate Nanohybrid for Hydrogen Transfer of Biomass-Derived Carboxides. ACS catalysis, vol.6, no.11, 7722-7727.

  17. Li, Hu, Liu, Xiaofang, Yang, Tingting, Zhao, Wenfeng, Saravanamurugan, Shunmugavel, Yang, Song. Porous Zirconium-Furandicarboxylate Microspheres for Efficient Redox Conversion of Biofuranics. ChemSusChem, vol.10, no.8, 1761-1770.

  18. Li, Hu, Fang, Zhen, He, Jian, Yang, Song. Orderly Layered Zr‐Benzylphosphonate Nanohybrids for Efficient Acid-Base‐Mediated Bifunctional/Cascade Catalysis. ChemSusChem, vol.10, no.4, 681-686.

  19. Iglesias, Jose, Melero, Juan, Morales, Gabriel, Moreno, Jovita, Segura, Yolanda, Paniagua, Marta, Cambra, Alberto, Hernández, Blanca. Zr-SBA-15 Lewis Acid Catalyst: Activity in Meerwein Ponndorf Verley Reduction. Catalysts, vol.5, no.4, 1911-1927.

  20. Montes, V., Miñambres, J.F., Khalilov, A.N., Boutonnet, M., Marinas, J.M., Urbano, F.J., Maharramov, A.M., Marinas, A.. Chemoselective hydrogenation of furfural to furfuryl alcohol on ZrO2 systems synthesized through the microemulsion method. Catalysis today, vol.306, 89-95.

  21. Vermoortele, Frederik, Bueken, Bart, Le Bars, Gaëlle, Van de Voorde, Ben, Vandichel, Matthias, Houthoofd, Kristof, Vimont, Alexandre, Daturi, Marco, Waroquier, Michel, Van Speybroeck, Veronique, Kirschhock, Christine, De Vos, Dirk E.. Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, vol.135, no.31, 11465-11468.

  22. Plessers, E., De Vos, D.E., Roeffaers, M.B.J.. Chemoselective reduction of α,β-unsaturated carbonyl compounds with UiO-66 materials. Journal of catalysis, vol.340, 136-143.

  23. Plessers, Eva, Fu, Guangxia, Tan, Collin, De Vos, Dirk, Roeffaers, Maarten. Zr-Based MOF-808 as Meerwein-Ponndorf-Verley Reduction Catalyst for Challenging Carbonyl Compounds. Catalysts, vol.6, no.7, 104-.

  24. Valekar, Anil H., Cho, Kyung-Ho, Chitale, Sachin K., Hong, Do-Young, Cha, Ga-Young, Lee, U-Hwang, Hwang, Dong Won, Serre, Christian, Chang, Jong-San, Hwang, Young Kyu. Catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over zirconium-based metal–organic frameworks. Green chemistry : an international journal and green chemistry resource : GC, vol.18, no.16, 4542-4552.

  25. He, Jian, Li, Hu, Riisager, Anders, Yang, Song. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol with Recyclable Al-Zr@Fe Mixed Oxides. ChemCatChem, vol.10, no.2, 430-438.

  26. He, Jian, Schill, Leonhard, Yang, Song, Riisager, Anders. Catalytic Transfer Hydrogenation of Bio-Based Furfural with NiO Nanoparticles. ACS sustainable chemistry et engineering, vol.6, no.12, 17220-17229.

  27. Zhang, Jun, Dong, Kaijun, Luo, Weimin, Guan, Haifeng. Selective Transfer Hydrogenation of Furfural into Furfuryl Alcohol on Zr-Containing Catalysts Using Lower Alcohols as Hydrogen Donors. ACS omega, vol.3, no.6, 6206-6216.

  28. Hao, Weiwei, Li, Weifeng, Tang, Xing, Zeng, Xianhai, Sun, Yong, Liu, Shijie, Lin, Lu. Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethyl furfural to the building block 2,5-bishydroxymethyl furan. Green chemistry : an international journal and green chemistry resource : GC, vol.18, no.4, 1080-1088.

  29. Zhou, Shenghui, Dai, Fanglin, Xiang, Zhouyang, Song, Tao, Liu, Detao, Lu, Fachuang, Qi, Haisong. Zirconium–lignosulfonate polyphenolic polymer for highly efficient hydrogen transfer of biomass-derived oxygenates under mild conditions. Applied catalysis. B, Environmental, vol.248, 31-43.

  30. Wang, Ruiying, Wang, Jianjia, Zi, Huimin, Wang, Haijun, Xia, Yongmei, Liu, Xiang. Conversion of ethyl levulinate to γ‐valerolactone catalyzed by the new Zr‐containing organic-inorganic hybrid catalysts. Journal of the Chinese Chemical Society = 中國化學會會誌, vol.65, no.11, 1398-1406.

  31. López-Asensio, Raquel, Jiménez Gómez, Carmen Pilar, García Sancho, Cristina, Moreno-Tost, Ramón, Cecilia, Juan Antonio, Maireles-Torres, Pedro. Influence of Structure-modifying Agents in the Synthesis of Zr-doped SBA-15 Silica and Their Use as Catalysts in the Furfural Hydrogenation to Obtain High Value-added Products through the Meerwein-Ponndorf-Verley Reduction. International journal of molecular sciences, vol.20, no.4, 828-.

  32. Gong, Wanbing, Chen, Chun, Fan, Ruoyu, Zhang, Haimin, Wang, Guozhong, Zhao, Huijun. Transfer-hydrogenation of furfural and levulinic acid over supported copper catalyst. Fuel, vol.231, 165-171.

  33. Villaverde, M.M., Garetto, T.F., Marchi, A.J.. Liquid-phase transfer hydrogenation of furfural to furfuryl alcohol on Cu-Mg-Al catalysts. Catalysis communications, vol.58, 6-10.

  34. Xu, Shaodan, Yu, Deqing, Ye, Tao, Tian, Panpan. Catalytic transfer hydrogenation of levulinic acid to γ-valerolactone over a bifunctional tin catalyst. RSC advances, vol.7, no.2, 1026-1031.

  35. Rani, Poonam, Srivastava, Rajendra. Integration of a metal-organic framework with zeolite: a highly sustainable composite catalyst for the synthesis of γ-valerolactone and coumarins. Sustainable energy & fuels, vol.2, no.6, 1287-1298.

  36. Zhu, Yongzhong, Chuah, Gaik-Khuan, Jaenicke, Stephan. Selective Meerwein–Ponndorf–Verley reduction of α,β-unsaturated aldehydes over Zr-zeolite beta. Journal of catalysis, vol.241, no.1, 25-33.

  37. Rojas‐Buzo, Sergio, García‐García, Pilar, Corma, Avelino. Catalytic Transfer Hydrogenation of Biomass‐Derived Carbonyls over Hafnium‐Based Metal-Organic Frameworks. ChemSusChem, vol.11, no.2, 432-438.

  38. Kurisingal, Jintu Francis, Rachuri, Yadagiri, Palakkal, Athulya S., Pillai, Renjith S., Gu, Yunjang, Choe, Youngson, Park, Dae-Won. Water-Tolerant DUT-Series Metal-Organic Frameworks: A Theoretical-Experimental Study for the Chemical Fixation of CO2 and Catalytic Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone. ACS applied materials & interfaces, vol.11, no.44, 41458-41471.

  39. Chen, Xiufang, Zhang, Ligang, Zhang, Bo, Guo, Xingcui, Mu, Xindong. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water. Scientific reports, vol.6, 28558-28558.

  40. Yuan, Q., Zhang, D., Haandel, L.v., Ye, F., Xue, T., Hensen, E.J., Guan, Y.. Selective liquid phase hydrogenation of furfural to furfuryl alcohol by Ru/Zr-MOFs. Journal of molecular catalysis. A, Chemical, vol.406, 58-64.

  41. Wang, Guimei, Yao, Ruihua, Xin, Huiyue, Guan, Yejun, Wu, Peng, Li, Xiaohong. At room temperature in water: efficient hydrogenation of furfural to furfuryl alcohol with a Pt/SiC–C catalyst. RSC advances, vol.8, no.65, 37243-37253.

  42. Xiao, Chaoxian, Goh, Tian-Wei, Qi, Zhiyuan, Goes, Shannon, Brashler, Kyle, Perez, Christopher, Huang, Wenyu. Conversion of Levulinic Acid to γ-Valerolactone over Few-Layer Graphene-Supported Ruthenium Catalysts. ACS catalysis, vol.6, no.2, 593-599.

  43. Tan, Jingjing, Cui, Jinglei, Zhu, Yulei, Cui, Xiaojing, Shi, Yun, Yan, Wenjun, Zhao, Yongxiang. Complete Aqueous Hydrogenation of 5-Hydroxymethylfurfural at Room Temperature over Bimetallic RuPd/Graphene Catalyst. ACS sustainable chemistry et engineering, vol.7, no.12, 10670-10678.

  44. Bai, Yan, Dou, Yibo, Xie, Lin-Hua, Rutledge, William, Li, Jian-Rong, Zhou, Hong-Cai. Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chemical Society reviews, vol.45, no.8, 2327-2367.

  45. Liu, Yangyang, Klet, Rachel C., Hupp, Joseph T., Farha, Omar. Probing the correlations between the defects in metal–organic frameworks and their catalytic activity by an epoxide ring-opening reaction. Chemical communications : Chem comm, vol.52, no.50, 7806-7809.

  46. Rimoldi, Martino, Howarth, Ashlee J., DeStefano, Matthew R., Lin, Lu, Goswami, Subhadip, Li, Peng, Hupp, Joseph T., Farha, Omar K.. Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks. ACS catalysis, vol.7, no.2, 997-1014.

  47. Salomon, William, Roch-Marchal, Catherine, Mialane, Pierre, Rouschmeyer, Paul, Serre, Christian, Haouas, Mohamed, Taulelle, Francis, Yang, Shu, Ruhlmann, Laurent, Dolbecq, Anne. Immobilization of polyoxometalates in the Zr-based metal organic framework UiO-67. Chemical communications : Chem comm, vol.51, no.14, 2972-2975.

  48. Bon, Volodymyr, Senkovska, Irena, Weiss, Manfred S., Kaskel, Stefan. Tailoring of network dimensionality and porosity adjustment in Zr- and Hf-based MOFs. CrystEngComm, vol.15, no.45, 9572-9577.

  49. Bon, Volodymyr, Senkovska, Irena, Baburin, Igor A., Kaskel, Stefan. Zr- and Hf-Based Metal–Organic Frameworks: Tracking Down the Polymorphism. Crystal growth & design, vol.13, no.3, 1231-1237.

  50. Furukawa, Hiroyasu, Gándara, Felipe, Zhang, Yue-Biao, Jiang, Juncong, Queen, Wendy L., Hudson, Matthew R., Yaghi, Omar M.. Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. Journal of the American Chemical Society, vol.136, no.11, 4369-4381.

  51. Jung, Kwang-Deog, Bell, Alexis T.. Role of Hydrogen Spillover in Methanol Synthesis over Cu/ZrO2. Journal of catalysis, vol.193, no.2, 207-223.

  52. Rhodes, Michael D., Pokrovski, Konstantin A., Bell, Alexis T.. The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts : Part II. Transient-response infrared studies. Journal of catalysis, vol.233, no.1, 210-220.

  53. Yang, Dong, Bernales, Varinia, Islamoglu, Timur, Farha, Omar K., Hupp, Joseph T., Cramer, Christopher J., Gagliardi, Laura, Gates, Bruce C.. Tuning the Surface Chemistry of Metal Organic Framework Nodes: Proton Topology of the Metal-Oxide-Like Zr6 Nodes of UiO-66 and NU-1000. Journal of the American Chemical Society, vol.138, no.46, 15189-15196.

  54. Ouyang, Feng, N. Kondo, Junko, Maruya, Ken-ichi, Domen, Kazunari. IR study on H/D isotope exchange reactions of formate and methoxy species with D2 on ZrO2. Journal of the Chemical Society. Faraday transactions, vol.93, no.1, 169-174.

  55. Planas, Nora, Mondloch, Joseph E., Tussupbayev, Samat, Borycz, Joshua, Gagliardi, Laura, Hupp, Joseph T., Farha, Omar K., Cramer, Christopher J.. Defining the Proton Topology of the Zr6-Based Metal–Organic Framework NU-1000. The journal of physical chemistry letters, vol.5, no.21, 3716-3723.

  56. Deria, Pravas, Bury, Wojciech, Hod, Idan, Kung, Chung-Wei, Karagiaridi, Olga, Hupp, Joseph T., Farha, Omar K.. MOF Functionalization via Solvent-Assisted Ligand Incorporation: Phosphonates vs Carboxylates. Inorganic chemistry, vol.54, no.5, 2185-2192.

  57. 10.1039/C5CY00330J 

  58. Vimont, A., Goupil, J.-M., Lavalley, J.-C., Daturi, M., Surble, S., Serre, C., Millange, F., Ferey, G., Audebrand, N.. Investigation of Acid Sites in a Zeotypic Giant Pores Chromium(III) Carboxylate. Journal of the American Chemical Society, vol.128, no.10, 3218-3227.

  59. Mautschke, H.-H., Drache, F., Senkovska, I., Kaskel, S., Llabrés i Xamena, F. X.. Catalytic properties of pristine and defect-engineered Zr-MOF-808 metal organic frameworks. Catalysis science & technology, vol.8, no.14, 3610-3616.

  60. Driscoll, Darren M., Troya, Diego, Usov, Pavel M., Maynes, Andrew J., Morris, Amanda J., Morris, John R.. Characterization of Undercoordinated Zr Defect Sites in UiO-66 with Vibrational Spectroscopy of Adsorbed CO. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.122, no.26, 14582-14589.

  61. Fang, H., Xia, J., Zhu, K., Su, Y., Jiang, Y.. Industrial waste heat utilization for low temperature district heating. Energy policy, vol.62, 236-246.

  62. Ammar, Yasmine, Joyce, Sharon, Norman, Rosemary, Wang, Yaodong, Roskilly, Anthony P.. Low grade thermal energy sources and uses from the process industry in the UK. Applied energy, vol.89, no.1, 3-20.

  63. Zhou, Shenghui, Dai, Fanglin, Xiang, Zhouyang, Song, Tao, Liu, Detao, Lu, Fachuang, Qi, Haisong. Zirconium–lignosulfonate polyphenolic polymer for highly efficient hydrogen transfer of biomass-derived oxygenates under mild conditions. Applied catalysis. B, Environmental, vol.248, 31-43.

  64. Tang, Xing, Hu, Lei, Sun, Yong, Zhao, Geng, Hao, Weiwei, Lin, Lu. Conversion of biomass-derived ethyl levulinate into γ-valerolactone via hydrogen transfer from supercritical ethanol over a ZrO2 catalyst. RSC advances, vol.3, no.26, 10277-.

  65. Gonell, Francisco, Boronat, Mercedes, Corma, Avelino. Structure-reactivity relationship in isolated Zr sites present in Zr-zeolite and ZrO2 for the Meerwein-Ponndorf-Verley reaction. Catalysis science & technology, vol.7, no.13, 2865-2873.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로