$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Colorimetric Band-aids for Point-of-Care Sensing and Treating Bacterial Infection 원문보기

ACS central science, v.6 no.2, 2020년, pp.207 - 212  

Sun, Yuhuan (Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China) ,  Zhao, Chuanqi (Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China) ,  Niu, Jingsheng (Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China) ,  Ren, Jinsong ,  Qu, Xiaogang

Abstract AI-Helper 아이콘AI-Helper

Sensing bacterial infections and monitoring drug resistance are very important for the selection of treatment options. However, the common methods of sensing resistance are limited by time-consuming, the requirement for professional personnel, and expensive instruments. Moreover, the abuse of antibi...

참고문헌 (37)

  1. Mckenna M. How to fight superbugs: start spending money. https://www.wired.com/2015/02/oneill-amr-2/ . 

  2. O’Connell K. M. G. ; Hodgkinson J. T. ; Sore H. F. ; Welch M. ; Salmond G. P. C. ; Spring D. R. Combating multidrug-resistant bacteria: current strategies for the discovery of novel antibacterials . Angew. Chem., Int. Ed. 2013 , 52 , 10706 ? 10733 . 10.1002/anie.201209979 . 

  3. Soh M. ; Kang D.-W. ; Jeong H.-G. ; Kim D. ; Kim D. Y. ; Yang W. ; Song C. ; Baik S. ; Choi I.-Y. ; Ki S.-K. ; Kwon H. J. ; Kim T. ; Kim C. K. ; Lee S.-H. ; Hyeon T. Ceria?zirconia nanoparticles as an enhanced multi-antioxidant for sepsis treatment . Angew. Chem., Int. Ed. 2017 , 56 , 11399 ? 11403 . 10.1002/anie.201704904 . 

  4. Walsh C. Molecular mechanisms that confer antibacterial drug resistance . Nature 2000 , 406 , 775 ? 781 . 10.1038/35021219 . 10963607 

  5. Coates A. ; Hu Y. ; Bax R. ; Page C. The future challenges facing the development of new antimicrobial drugs . Nat. Rev. Drug Discovery 2002 , 1 , 895 10.1038/nrd940 . 12415249 

  6. Chellat M. F. ; Ragu L. ; Riedl R. Targeting antibiotic resistance . Angew. Chem., Int. Ed. 2016 , 55 , 6600 ? 6626 . 10.1002/anie.201506818 . 

  7. Yarlagadda V. ; Sarkar P. ; Samaddar S. ; Haldar J. A vancomycin derivative with a pyrophosphate-binding group: a strategy to combat vancomycin-resistant bacteria . Angew. Chem., Int. Ed. 2016 , 55 , 7836 ? 7840 . 10.1002/anie.201601621 . 

  8. Chen J. ; Andler S. M. ; Goddard J. M. ; Nugen S. R. ; Rotello V. M. Integrating recognition elements with nanomaterials for bacteria sensing . Chem. Soc. Rev. 2017 , 46 , 1272 ? 1283 . 10.1039/C6CS00313C . 27942636 

  9. Gram L. ; Ravn L. ; Rasch M. ; Bruhn J. B. ; Christensen A. B. ; Givskov M. Food spoilage―interactions between food spoilage bacteria . Int. J. Food Microbiol. 2002 , 78 , 79 ? 97 . 10.1016/S0168-1605(02)00233-7 . 12222639 

  10. Pornpattananangkul D. ; Zhang L. ; Olson S. ; Aryal S. ; Obonyo M. ; Vecchio K. ; Huang C.-M. ; Zhang L. Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection . J. Am. Chem. Soc. 2011 , 133 , 4132 ? 4139 . 10.1021/ja111110e . 21344925 

  11. Ji H. ; Dong K. ; Yan Z. ; Ding C. ; Chen Z. ; Ren J. ; Qu X. Bacterial hyaluronidase self-triggered prodrug release for chemo-photothermal synergistic treatment of bacterial infection . Small 2016 , 12 , 6200 ? 6206 . 10.1002/smll.201601729 . 27690183 

  12. Gupta A. ; Mumtaz S. ; Li C.-H. ; Hussain I. ; Rotello V. M. Combatting antibiotic-resistant bacteria using nanomaterials . Chem. Soc. Rev. 2019 , 48 , 415 ? 427 . 10.1039/C7CS00748E . 30462112 

  13. Wang X.-d. ; Meier R. J. ; Wolfbeis O. S. Fluorescent pH-sensitive nanoparticles in an agarose matrix for imaging of bacterial growth and metabolism . Angew. Chem., Int. Ed. 2013 , 52 , 406 ? 409 . 10.1002/anie.201205715 . 

  14. Yan Z. ; Shi P. ; Ren J. ; Qu X. A. Sense-and-treat” hydrogel used for treatment of bacterial infection on the solid matrix . Small 2015 , 11 , 5540 ? 5544 . 10.1002/smll.201501958 . 26313759 

  15. Li Y. ; Liu G. ; Wang X. ; Hu J. ; Liu S. Enzyme-responsive polymeric vesicles for bacterial-strain-selective delivery of antimicrobial agents . Angew. Chem., Int. Ed. 2016 , 55 , 1760 ? 1764 . 10.1002/anie.201509401 . 

  16. Aw J. ; Widjaja F. ; Ding Y. ; Mu J. ; Liang Y. ; Xing B. Enzyme-responsive reporter molecules for selective localization and fluorescence imaging of pathogenic biofilms . Chem. Commun. 2017 , 53 , 3330 ? 3333 . 10.1039/C6CC09296A . 

  17. Varadi L. ; Luo J. L. ; Hibbs D. E. ; Perry J. D. ; Anderson R. J. ; Orenga S. ; Groundwater P. W. Methods for the detection and identification of pathogenic bacteria: past, present, and future . Chem. Soc. Rev. 2017 , 46 , 4818 ? 4832 . 10.1039/C6CS00693K . 28644499 

  18. Chen Z. ; Wang Z. ; Ren J. ; Qu X. Enzyme mimicry for combating bacteria and biofilms . Acc. Chem. Res. 2018 , 51 , 789 ? 799 . 10.1021/acs.accounts.8b00011 . 29489323 

  19. Jia H.-R. ; Zhu Y.-X. ; Chen Z. ; Wu F.-G. Cholesterol-assisted bacterial cell surface engineering for photodynamic inactivation of Gram-positive and Gram-negative bacteria . ACS Appl. Mater. Interfaces 2017 , 9 , 15943 ? 15951 . 10.1021/acsami.7b02562 . 28426936 

  20. Ristic B. Z. ; Milenkovic M. M. ; Dakic I. R. ; Todorovic-Markovic B. M. ; Milosavljevic M. S. ; Budimir M. D. ; Paunovic V. G. ; Dramicanin M. D. ; Markovic Z. M. ; Trajkovic V. S. Photodynamic antibacterial effect of graphene quantum dots . Biomaterials 2014 , 35 , 4428 ? 4435 . 10.1016/j.biomaterials.2014.02.014 . 24612819 

  21. Yang B. ; Chen Y. ; Shi J. Reactive xxygen species (ROS)-based nanomedicine . Chem. Rev. 2019 , 119 , 4881 ? 4985 . 10.1021/acs.chemrev.8b00626 . 30973011 

  22. Linden G. ; Zhang L. ; Pieck F. ; Linne U. ; Kosenkov D. ; Tonner R. ; Vazquez O. Conditional singlet oxygen generation via DNA-targeted tetrazine bioorthogonal reaction . Angew. Chem., Int. Ed. 2019 , 58 , 12868 ? 12873 . 10.1002/anie.201907093 . 

  23. Boehle K. E. ; Gilliand J. ; Wheeldon C. R. ; Holder A. ; Adkins J. A. ; Geiss B. J. ; Ryan E. P. ; Henry C. S. Utilizing paper-based devices for antimicrobial resistant bacteria detection . Angew. Chem., Int. Ed. 2017 , 56 , 6886 ? 6890 . 10.1002/anie.201702776 . 

  24. Tram K. ; Kanda P. ; Salena B. J. ; Huan S. ; Li Y. Translating bacterial detection by DNAzymes into a litmus test . Angew. Chem., Int. Ed. 2014 , 53 , 12799 ? 12802 . 10.1002/anie.201407021 . 

  25. Carpenter B. L. ; Scholle F. ; Sadeghifar H. ; Francis A. J. ; Boltersdorf J. ; Weare W. W. ; Argyropoulos D. S. ; Maggard P. A. ; Ghiladi R. A. Synthesis, characterization, and antimicrobial efficacy of photomicrobicidal cellulose paper . Biomacromolecules 2015 , 16 , 2482 ? 2492 . 10.1021/acs.biomac.5b00758 . 26181636 

  26. Deiss F. ; Funes-Huacca M. E. ; Bal J. ; Tjhung K. F. ; Derda R. Antimicrobial susceptibility assays in paper-based portable culture devices . Lab Chip 2014 , 14 , 167 ? 171 . 10.1039/C3LC50887K . 24185315 

  27. Hu W. ; Peng C. ; Luo W. ; Lv M. ; Li X. ; Li D. ; Huang Q. ; Fan C. Graphene-based antibacterial paper . ACS Nano 2010 , 4 , 4317 ? 4323 . 10.1021/nn101097v . 20593851 

  28. van Oosten M. ; Schafer T. ; Gazendam J. A. C. ; Ohlsen K. ; Tsompanidou E. ; de Goffau M. C. ; Harmsen H. J. M. ; Crane L. M. A. ; Lim E. ; Francis K. P. ; Cheung L. ; Olive M. ; Ntziachristos V. ; van Dijl J. M. ; van Dam G. M. Real-time in vivo imaging of invasive- and biomaterial-associated bacterial infections using fluorescently labelled vancomycin . Nat. Commun. 2013 , 4 , 2584 10.1038/ncomms3584 . 24129412 

  29. Li Y.-Q. ; Zhu B. ; Li Y. ; Leow W. R. ; Goh R. ; Ma B. ; Fong E. ; Tang M. ; Chen X. A Synergistic capture strategy for enhanced detection and elimination of bacteria . Angew. Chem., Int. Ed. 2014 , 53 , 5837 ? 5841 . 10.1002/anie.201310135 . 

  30. Lopez-Igual R. ; Bernal-Bayard J. ; Rodriguez-Paton A. ; Ghigo J.-M. ; Mazel D. Engineered toxin?intein antimicrobials can selectively target and kill antibiotic-resistant bacteria in mixed populations . Nat. Biotechnol. 2019 , 37 , 755 ? 760 . 10.1038/s41587-019-0105-3 . 30988505 

  31. Park J. ; Jiang Q. ; Feng D. ; Mao L. ; Zhou H.-C. Size-controlled synthesis of porphyrinic metal?organic framework and functionalization for targeted photodynamic therapy . J. Am. Chem. Soc. 2016 , 138 , 3518 ? 3525 . 10.1021/jacs.6b00007 . 26894555 

  32. Deria P. ; Mondloch J. E. ; Karagiaridi O. ; Bury W. ; Hupp J. T. ; Farha O. K. Beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement . Chem. Soc. Rev. 2014 , 43 , 5896 ? 5912 . 10.1039/C4CS00067F . 24723093 

  33. Cohen S. M. Postsynthetic methods for the functionalization of metal?organic frameworks . Chem. Rev. 2012 , 112 , 970 ? 1000 . 10.1021/cr200179u . 21916418 

  34. Tanabe K. K. ; Cohen S. M. Postsynthetic modification of metal?organic frameworks―a progress report . Chem. Soc. Rev. 2011 , 40 , 498 ? 519 . 10.1039/C0CS00031K . 21103601 

  35. Koshland D. ; Botstein D. Evidence for posttranslational translocation of β-lactamase across the bacterial inner membrane . Cell 1982 , 30 , 893 ? 902 . 10.1016/0092-8674(82)90294-X . 6754092 

  36. Minsky A. ; Summers R. G. ; Knowles J. R. Secretion of beta-lactamase into the periplasm of Escherichia coli: evidence for a distinct release step associated with a conformational change . Proc. Natl. Acad. Sci. U. S. A. 1986 , 83 , 4180 ? 4184 . 10.1073/pnas.83.12.4180 . 3520569 

  37. Liu Y. ; Ding S. ; Dietrich R. ; Martlbauer E. ; Zhu K. A biosurfactant-inspired heptapeptide with improved specificity to kill MRSA . Angew. Chem., Int. Ed. 2017 , 56 , 1486 ? 1490 . 10.1002/anie.201609277 . 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로