$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Micellar and sub-micellar liquid chromatography of terephthalic acid contaminants using a C18 column coated with Tween 20

Analytica chimica acta : an international journal devoted to all branches of analytical chemistry, v.1105, 2020년, pp.214 - 223  

Ali, Abd al-karim F. (Corresponding author.) ,  Danielson, Neil D.

Abstract AI-Helper 아이콘AI-Helper

Abstract The tremendous amounts of terephthalic acid (TPA) produced globally require consistent monitoring of its contaminants during the different stages of production for quality control purposes. In this paper, a simple, robust and green liquid chromatography method has been developed using an i...

주제어

참고문헌 (73)

  1. Acc. Chem. Res. Anastas 35 686 2002 10.1021/ar010065m Origins, current status, and future challenges of green chemistry 

  2. Curr. Opin. Green Sustain. Chem. Tobiszewski 5 1 2017 10.1016/j.cogsc.2017.03.002 Greener organic solvents in analytical chemistry 

  3. P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, Oxford, UK. 

  4. TrAC Trends Anal. Chem. (Reference Ed.) Gałuszka 50 78 2013 10.1016/j.trac.2013.04.010 The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices 

  5. TrAC Trends Anal. Chem. (Reference Ed.) Armenta 80 517 2016 10.1016/j.trac.2015.06.012 Green chromatography for the analysis of foods of animal origin 

  6. TrAC Trends Anal. Chem. (Reference Ed.) Tobiszewski 35 67 2012 10.1016/j.trac.2012.02.006 Direct chromatographic methods in the context of green analytical chemistry 

  7. Green Chem. Rocha 3 216 2001 10.1039/b103187m Flow analysis strategies to greener analytical chemistry. An overview 

  8. J. Chromatogr., A Płotka 1307 1 2013 10.1016/j.chroma.2013.07.099 Green chromatography 

  9. TrAC Trends Anal. Chem. (Reference Ed.) Welch 29 667 2010 10.1016/j.trac.2010.03.008 Greening analytical chromatography 

  10. Anal. Chim. Acta Ramezani 1010 76 2018 10.1016/j.aca.2017.12.021 Green-modified micellar liquid chromatography for isocratic isolation of some cardiovascular drugs with different polarities through experimental design approach 

  11. J. Chromatogr., A Richardson 1491 67 2017 10.1016/j.chroma.2017.02.039 Micellar liquid chromatography of terephthalic acid impurities 

  12. Green Chem. Ruiz-Angel 17 3561 2015 10.1039/C5GC00338E Reversed-phase liquid chromatography with mixed micellar mobile phases of Brij-35 and sodium dodecyl sulphate: a method for the analysis of basic compounds 

  13. Armstrong 1981 Partitioning Behavior of Solutes Eluted with Micellar Mobile Phases in Liquid Chromatography 

  14. Anal. Chem. Armstrong 51 2160 1979 10.1021/ac50049a025 Thin layer chromatographic separation of pesticides, decachlorobiphenyl, and nucleosides with micellar solutions 

  15. Trends Anal. Chem. Pramauro 7 260 1988 10.1016/0165-9936(88)85075-1 Micelles: a new dimension in analytical chemistry 

  16. Green Chem. Shen 17 4073 2015 10.1039/C5GC00887E Alternative solvents can make preparative liquid chromatography greener 

  17. Am. Labor. Armstrong 13 14 1981 Application of pseudophase liquid chromatography 

  18. Anal. Chem. Armstron 55 2317 1983 10.1021/ac00264a026 Selectivity in pseudophase liquid chromatography 

  19. Chromatogr. Res. Int. Rambla-Alegre 1 2012 Retention behaviour in micellar liquid chromatography 

  20. J. Chromatogr., A Dorsey 316 183 1984 10.1016/S0021-9673(00)96150-8 Gradient elution micellar liquid chromatography 

  21. Anal. Chem. Khaledi 59 2738 1987 10.1021/ac00150a003 Retention behavior of homologous series in reversed-phase liquid chromatography using micellar, hydro-organic, and hybrid mobile phases 

  22. Anal. Chem. Dorsey 55 924 1983 10.1021/ac00257a024 Efficiency enhancement in micellar liquid chromatography 

  23. Anal. Chem. Arunyanart 56 1557 1984 10.1021/ac00273a005 Model for micellar effects on liquid chromatography capacity factors and for determination of micelle-solute equilibrium constants 

  24. J. Chromatogr., A Ruiz-Angel 1216 1798 2009 10.1016/j.chroma.2008.09.053 Retention mechanisms in micellar liquid chromatography 

  25. Anal. Chem. Borgerding 60 2520 1988 10.1021/ac00173a018 Investigation of the retention mechanism in nonionic micellar liquid chromatography using an alkylbenzene homologous series 

  26. Talanta Berthod 55 69 2001 10.1016/S0039-9140(01)00395-2 Polyoxyethylene alkyl ether nonionic surfactants: physicochemical properties and use for cholesterol determination in food 

  27. Anal. Chem. Berthod 58 1359 1986 10.1021/ac00298a020 Micellar liquid chromatography. Retention study of solutes of various polarities 

  28. Anal. Chem. Berthod 58 1362 1986 10.1021/ac00298a021 Additive effects on surfactant adsorption and ionic solute retention in micellar liquid chromatography 

  29. J. Chromatogr., A Asberg 1457 97 2016 10.1016/j.chroma.2016.06.036 A fundamental study of the impact of pressure on the adsorption mechanism in reversed-phase liquid chromatography 

  30. Anal. Chem. Berthod 58 1356 1986 10.1021/ac00298a019 Micellar liquid chromatography. Adsorption isotherms of two ionic surfactants on five stationary phases 

  31. J. Chromatogr. Sci. Fasciano 54 958 2016 10.1093/chromsci/bmw028 Ion-exclusion high-performance liquid chromatography of aliphatic organic acids using a surfactant-modified C18 column 

  32. J. Separ. Sci. Ortiz-Bolsico 38 550 2015 10.1002/jssc.201401059 Adsorption of the anionic surfactant sodium dodecyl sulfate on a C 18 column under micellar and high submicellar conditions in reversed-phase liquid chromatography 

  33. Colloids Surf. A Physicochem. Eng. Asp. Koneva 538 45 2018 10.1016/j.colsurfa.2017.10.044 Mixed aqueous solutions of nonionic surfactants Brij 35/Triton X-100: micellar properties, solutes’ partitioning from micellar liquid chromatography and modelling with COSMOmic 

  34. J. Liq. Chromatogr. Relat. Technol. Alwera 40 707 2017 10.1080/10826076.2017.1348954 Micellar liquid chromatography for enantioseparation of β-adrenolytics using (S)-ketoprofen-based reagents 

  35. J. Anal. Chem. Hadjmohammadi 71 639 2016 Separation of some phenolic acids in micellar liquid chromatography using design of experiment-response surface methodology 

  36. Anal. Bioanal. Chem. Peris-Garcia 410 5043 2018 10.1007/s00216-018-1161-0 Search of non-ionic surfactants suitable for micellar liquid chromatography 

  37. J. Chromatogr., A Fasciano 1438 150 2016 10.1016/j.chroma.2016.02.024 Micellar and sub-micellar ultra-high performance liquid chromatography of hydroxybenzoic acid and phthalic acid positional isomers 

  38. Ind. Eng. Chem. Res. Harvianto 56 2168 2017 10.1021/acs.iecr.6b04586 Process design and optimization of an acetic acid recovery system in terephthalic acid production via hybrid extraction-distillation using a novel mixed solvent 

  39. ChemSusChem Neau 9 3102 2016 10.1002/cssc.201600718 Synthesis of terephthalic acid by p-cymene oxidation using oxygen: toward a more sustainable production of bio-polyethylene terephthalate 

  40. Green Chem. Pang 18 342 2016 10.1039/C5GC01771H Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET 

  41. ChemistryOpen Jongedijk 7 201 2018 10.1002/open.201700178 Methyl perillate as a highly functionalized natural starting material for terephthalic acid 

  42. Mirabal 

  43. Chem. Rev. Tomas 113 7421 2013 10.1021/cr300298j p -xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development 

  44. Cuihua Xuebao/Chinese J. Catal. Fadzil 35 1641 2014 10.1016/S1872-2067(14)60193-5 A brief review of para-xylene oxidation to terephthalic acid as a model of primary C-H bond activation 

  45. Comput. Chem. Eng. Li 88 1 2016 10.1016/j.compchemeng.2016.01.017 Control structure design of an industrial crude terephthalic acid hydropurification process with catalyst deactivation 

  46. Aransiola 2013 Xylenes : production technologies and uses 

  47. Theor. Appl. Chem. Eng. Song 10 1 77 2004 Uncatalyzed partial oxidation of p-xylene to terephthalic acid in sub-critical water 

  48. Ind. Eng. Chem. Res. Suresh 39 3958 2000 10.1021/ie0002733 Engineering aspects of industrial liquid-phase air oxidation of hydrocarbons 

  49. Chin. J. Chem. Eng. Cheng 17 181 2009 10.1016/S1004-9541(08)60191-3 Kinetics of burning side reaction in the liquid-phase oxidation of p-xylene 

  50. Ind. Eng. Chem. Res. Suresh 39 3958 2000 10.1021/ie0002733 Engineering aspects of industrial liquid-phase air oxidation of hydrocarbons 

  51. Chem. Rev. Tomas 113 7421 2013 10.1021/cr300298j p -xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development 

  52. Ind. Eng. Chem. Res. Qian 51 3229 2012 10.1021/ie200737x Development of a free radical kinetic model for industrial oxidation of p-xylene based on artificial neural network and adaptive immune genetic algorithm 

  53. J. Chromatogr., A Huang 1216 2560 2009 10.1016/j.chroma.2009.01.003 Determining organic impurities in mother liquors from oxidative terephthalic acid synthesis by microemulsion electrokinetic chromatography 

  54. Chem. Eng. Sci. Li 104 93 2013 10.1016/j.ces.2013.09.004 A spray reactor concept for catalytic oxidation of p-xylene to produce high-purity terephthalic acid 

  55. J. Ind. Eng. Chem. Tourani 28 202 2015 10.1016/j.jiec.2015.02.015 Hydro-purification of crude terephthalic acid using palladium catalyst supported on multi-wall carbon nanotubes 

  56. Ind. Eng. Chem. Res. Zhong 57 9604 2018 10.1021/acs.iecr.8b01270 Online quality prediction of industrial terephthalic acid hydropurification process using modified regularized slow-feature analysis 

  57. J. Chromatogr., A Wu 1003 179 2003 10.1016/S0021-9673(03)00734-9 Capillary electrophoretic analysis of the derivatives and isomers of benzoate and phthalate 

  58. J. Braz. Chem. Soc. Moraes 15 400 2004 10.1590/S0103-50532004000300010 Analysis of impurities in crude and highly-purified terephthalic acid by capillary electrophoresis 

  59. J. Chromatogr. Sci. Yuan 50 410 2012 10.1093/chromsci/bms018 Simultaneous determination of nine related substances in p-phthalic acid residue by RP-HPLC 

  60. J. Chromatogr. Sci. Viola 34 27 1996 10.1093/chromsci/49.1.27 Rapid direct analysis of p-xylene oxidation products by reversed-phase high-performance liquid chromatography 

  61. J. Liq. Chromatogr. Relat. Technol. Yang 25 2709 2002 10.1081/JLC-120014387 Determination of o -toluic acid and its micro amounts of impurities in industrial products by HPLC 

  62. J. Chem. Thermodyn. Obradovi 110 41 2017 10.1016/j.jct.2017.01.020 The influence of the structure of selected Brij and Tween homologues on the thermodynamic stability of their binary mixed micelles 

  63. J. Chromatogr., A Nakao 1281 54 2013 10.1016/j.chroma.2013.01.071 “ Mixed” anionic and non-ionic micellar liquid chromatography for high-speed radiometabolite analysis of positron emission tomography radioligands 

  64. Anal. Bioanal. Chem. Mori 372 181 2002 10.1007/s00216-001-1199-1 Capillary electrophoresis using high ionic strength background electrolytes containing zwitterionic and non-ionic surfactants and its application to direct determination of bromide and nitrate in seawater 

  65. J. Chromatogr., A Li 734 357 1996 10.1016/0021-9673(95)01301-6 Nonionic surfactants for improving resolution of the priority pollutant phenols by micelle-modified capillary electrophoresis 

  66. J. Chromatogr., A Castelletti 894 281 2000 10.1016/S0021-9673(00)00664-6 Quantitative studies on the adsorption of proteins to the bare silica wall in capillary electrophoresis. III: effects of adsorbed surfactants on quenching the interaction 

  67. J. Chromatogr. Ghaemi 212 271 1981 10.1016/S0021-9673(01)84040-1 Hydrophobic chromatography with dynamically coated stationary phases 

  68. J. Chromatogr. A Desilets 544 25 1991 10.1016/S0021-9673(01)83976-5 Semipermeable-surface reversed-phase media for high- performance liquid chromatography 

  69. J. Chem. Educ. Tykodi 66 1007 1989 10.1021/ed066p1007 Identifying polar and nonpolar molecules 

  70. ACS Omega Tanase 4 19808 2019 10.1021/acsomega.9b02689 Sources of nonlinear van’t Hoff temperature dependence in high performance liquid chromatography 

  71. J. Chromatogr. A Chester 1003 101 2003 10.1016/S0021-9673(03)00846-X Effect of phase ratio on van’t Hoff analysis in reversed- phase liquid chromatography, and phase-ratio-independent estimation of transfer enthalpy 

  72. J. Chromatogr. Medford 368 31 1986 10.1016/S0021-9673(00)91044-6 Modification of reversed-phase separations of small molecules using non-ionic sufactants and mixed ionic-non-ionic surfactants 

  73. J. Liq. Chromatogr. Relat. Technol Penmetsa 23 831 2000 10.1081/JLC-100101492 Development of Reversed-phase Chiral HPLC Methods Using Mass Spectrometry Compatible Mobile Phases 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로