$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Field responsive mechanical metamaterials 원문보기

Science advances, v.4 no.12, 2018년, pp.eaau6419 -   

Jackson, Julie A. (Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA.) ,  Messner, Mark C. (Argonne National Laboratory, 9700 Cass Ave., Lemont, IL 60439, USA.) ,  Dudukovic, Nikola A. (Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA.) ,  Smith, William L. (Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA.) ,  Bekker, Logan (Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA.) ,  Moran, Bryan (Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA.) ,  Golobic, Alexandra M. (Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA.) ,  Pascall, Andrew J. (Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA.) ,  Duoss, Eric B. (Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA.) ,  Loh, Kenneth J. (University of California, Davis, 1 Shields Ave., Davis, CA 95616, USA.) ,  Spadaccini, Christopher M. (Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA.)

Abstract AI-Helper 아이콘AI-Helper

We present a new class of architected materials that exhibit rapid, reversible, and sizable changes in effective stiffness.Typically, mechanical metamaterial properties are programmed and set when the architecture is designed and constructed, and do not change in response to shifting environmental c...

참고문헌 (49)

  1. 1 L. J. Gibson, M. F. Ashby, Cellular Solids: Structure and Properties (Cambridge Univ. Press, 2001). 

  2. 2 M. Meyers, K. Chawla, Mechanical Behavior of Materials (Cambridge Univ. Press, ed. 2, 2009). 

  3. 3 Gibson L. J. , Biomechanics of cellular solids . J. Biomech. 38 , 377 – 399 ( 2005 ). 15652536 

  4. 4 Wadley H. N. G. , Cellular metals manufacturing . Adv. Eng. Mater. 4 , 726 – 733 ( 2002 ). 

  5. 5 Lehmhus D. , Vesenjak M. , Schampheleire S. d. , Fiedler T. , From stochastic foam to designed structure: Balancing cost and performance of cellular metals . Materials 10 , 922 ( 2017 ). 

  6. 6 Wegst U. G. K. , Bai H. , Saiz E. , Tomsia A. P. , Ritchie R. O. , Bioinspired structural materials . Nat. Mater. 14 , 23 – 36 ( 2015 ). 25344782 

  7. 7 Weaver J. C. , Milliron G. W. , Miserez A. , Evans-Lutterodt K. , Herrera S. , Gallana I. , Mershon W. J. , Swanson B. , Zavattieri P. , DiMasi E. , Kisailus D. , The stomatopod dactyl club: A formidable damage-tolerant biological hammer . Science 336 , 1275 – 1280 ( 2012 ). 22679090 

  8. 8 Lakes R. , Materials with structural hierarchy . Nature 361 , 511 – 515 ( 1993 ). 

  9. 9 Bertoldi K. , Vitelli V. , Christensen J. , van Hecke M. , Flexible mechanical metamaterials . Nat. Rev. Mater. 2 , 17066 ( 2017 ). 

  10. 10 Zheng X. , Lee H. , Weisgraber T. H. , Shusteff M. , DeOtte J. , Duoss E. B. , Kuntz J. D. , Biener M. M. , Ge Q. , Jackson J. A. , Kucheyev S. O. , Fang N. X. , Spadaccini C. M. , Ultralight, ultrastiff mechanical metamaterials . Science 344 , 1373 – 1377 ( 2014 ). 24948733 

  11. 11 Meza L. R. , Das S. , Greer J. R. , Strong, lightweight, and recoverable three-dimensional ceramic nanolattices . Science 345 , 1322 – 1326 ( 2014 ). 25214624 

  12. 12 Schaedler T. A. , Jacobsen A. J. , Torrents A. , Sorensen A. E. , Lian J. , Greer J. R. , Valdevit L. , Carter W. B. , Ultralight metallic microlattices . Science 334 , 962 – 965 ( 2011 ). 22096194 

  13. 13 Jang D. , Meza L. R. , Greer F. , Greer J. R. , Fabrication and deformation of three-dimensional hollow ceramic nanostructures . Nat. Mater. 12 , 893 – 898 ( 2013 ). 23995324 

  14. 14 Meza L. R. , Zelhofer A. J. , Clarke N. , Mateos A. J. , Kochmann D. M. , Greer J. R. , Resilient 3D hierarchical architected metamaterials . Proc. Natl. Acad. Sci. U.S.A. 112 , 11502 – 11507 ( 2015 ). 26330605 

  15. 15 Zheng X. , Smith W. , Jackson J. , Moran B. , Cui H. , Chen D. , Ye J. , Fang N. , Rodriguez N. , Weisgraber T. , Spadaccini C. M. , Multiscale metallic metamaterials . Nat. Mater. 15 , 1100 – 1106 ( 2016 ). 27429209 

  16. 16 Zhu C. , Yong-Jin Han T. , Duoss E. B. , Golobic A. M. , Kuntz J. D. , Spadaccini C. M. , Worsley M. A. , Highly compressible 3D periodic graphene aerogel microlattices . Nat. Commun. 6 , 6962 ( 2015 ). 25902277 

  17. 17 Bückmann T. , Stenger N. , Kadic M. , Kaschke J. , Frölich A. , Kennerknecht T. , Eberl C. , Thiel M. , Wegener M. , Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography . Adv. Mater. 24 , 2710 – 2714 ( 2012 ). 22495906 

  18. 18 Babaee S. , Shim J. , Weaver J. C. , Chen E. R. , Patel N. , Bertoldi K. , 3D soft metamaterials with negative Poisson’s ratio . Adv. Mater. 25 , 5044 – 5049 ( 2013 ). 23878067 

  19. 19 Yasuda H. , Yang J. , Reentrant origami-based metamaterials with negative Poisson’s ratio and bistability . Phys. Rev. Lett. 114 , 185502 ( 2015 ). 26001009 

  20. 20 Gatt R. , Mizzi L. , Azzopardi J. I. , Azzopardi K. M. , Attard D. , Casha A. , Briffa J. , Grima J. N. , Hierarchical auxetic mechanical metamaterials . Sci. Rep. 5 , 8395 ( 2015 ). 25670400 

  21. 21 Bückmann T. , Thiel M. , Kadic M. , Schittny R. , Wegener M. , An elasto-mechanical unfeelability cloak made of pentamode metamaterials . Nat. Commun. 5 , 4130 ( 2014 ). 24942191 

  22. 22 Wang Q. , Jackson J. A. , Ge Q. , Hopkins J. B. , Spadaccini C. M. , Fang N. X. , Lightweight mechanical metamaterials with tunable negative thermal expansion . Phys. Rev. Lett. 117 , 175901 ( 2016 ). 27824463 

  23. 23 Qu J. , Kadic M. , Naber A. , Wegener M. , Micro-structured two-component 3D metamaterials with negative thermal-expansion coefficient from positive constituents . Sci. Rep. 7 , 40643 ( 2017 ). 28079161 

  24. 24 Xu H. , Pasani D. , Structurally efficient three-dimensional metamaterials with controllable thermal expansion . Sci. Rep. 6 , 34924 ( 2016 ). 27721437 

  25. 25 Peterson G. I. , Larsen M. B. , Ganter M. A. , Storti D. W. , Boydston A. J. , 3D-printed mechanochromic materials . ACS Appl. Mater. Interfaces 7 , 577 – 583 ( 2015 ). 25478746 

  26. 26 Rodriguez J. N. , Zhu C. , Duoss E. B. , Wilson T. S. , Spadaccini C. M. , Lewicki J. P. , Shape-morphing composites with designed micro-architectures . Sci. Rep. 6 , 27933 ( 2016 ). 27301435 

  27. 27 Ge Q. , Qi H. J. , Dunn M. L. , Active materials by four-dimension printing . Appl. Phys. Lett. 103 , 131901 ( 2013 ). 

  28. 28 Ge Q. , Sakhaei A. H. , Lee H. , Dunn C. K. , Fang N. X. , Dunn M. L. , Multimaterial 4D printing with tailorable shape memory polymers . Sci. Rep. 6 , 31110 ( 2016 ). 27499417 

  29. 29 Gladman A. S. , Matsumoto E. A. , Nuzzo R. G. , Mahadevan L. , Lewis J. A. , Biomimetic 4D printing . Nat. Mater. 15 , 413 – 418 ( 2016 ). 26808461 

  30. 30 Lee H. , Xia C. , Fang N. X. , First jump of microgel; actuation speed enhancement by elastic instability . Soft Matter 6 , 4342 – 4345 ( 2010 ). 

  31. 31 Yu K. , Fang N. X. , Huang G. , Wang Q. , Magnetoactive acoustic metamaterials . Adv. Mater. 30 , 1706348 ( 2018 ). 

  32. 32 Zhang H. , Guo X. , Wu J. , Fang D. , Zhang Y. , Soft mechanical metamaterials with unusual swelling behavior and tunable stress-strain curves . Sci. Adv. 4 , eaar8535 ( 2018 ). 29888326 

  33. 33 Kim Y. , Yuk H. , Zhao R. , Chester S. A. , Zhao X. , Printing ferromagnetic domains for untethered fast-transforming soft materials . Nature 558 , 274 – 279 ( 2018 ). 29899476 

  34. 34 Lui J. , Gu T. , Shan S. , Kang S. H. , Weaver J. C. , Bertoldi K. , Harnessing buckling to design architected materials that exhibit effective negative swelling . Adv. Mater. 28 , 6619 – 6624 ( 2016 ). 27184443 

  35. 35 Rabinow J. , The magnetic clutch . AIEE Trans. 67 , 1308 – 1315 ( 1948 ). 

  36. 36 Jolly M. R. , Carlson J. D. , Muñoz B. C. , A model of the behavior of magnetorheological materials . Smart Mater. Struct. 5 , 607 – 614 ( 1996 ). 

  37. 37 Carlson J. D. , Catanzarite D. M. , St. Clair K. A. , Commercial magneto-rheological fluid devices . Int. J. Mod. Phys. B 10 , 2857 – 2865 ( 1996 ). 

  38. 38 Varga Z. , Filipcsei G. , Zrínyi M. , Smart composites with controlled anisotropy . Polymer 46 , 7779 – 7787 ( 2005 ). 

  39. 39 Carlson J. D. , Jolly M. R. , MR fluid, foam and elastomer devices . Mechatronics 10 , 555 – 569 ( 2000 ). 

  40. 40 Zhu C. , The response time of a magnetorheological fluid squeeze film damper rotor system . Key Eng. Mater. 334–335 , 1085 – 1088 ( 2007 ). 

  41. 41 Koo J.-H. , Goncalves F. D. , Ahmadian M. A. , Comprehensive analysis of the response time of MR dampers . Smart Mater. Struct. 15 , 351 – 358 ( 2006 ). 

  42. 42 Ulicny J. C. , Golden M. A. , Namuduri C. S. , Klingenberg D. J. , Transient response of magnetorheological fluids: Shear flow between concentric cylinders . J. Rheol. 49 , 87 – 104 ( 2005 ). 

  43. 43 R. C. Hibbeler, Structural Analysis (Pearson Prentice Hall, ed. 7, 2009). 

  44. 44 Loeb A. L. , Vector equilibrium synergy . Int. J. Space Struct. 1 , 99 – 103 ( 1985 ). 

  45. 45 R. B. Fuller, Synergetic building construction. United States of America Patent US2986241 A. February 7, (1956). 

  46. 46 Cui H. , Hensleigh R. , Chen H. , Zheng X. , Additive manufacturing and size-dependent mechanical properties of three-dimensional microarchitected, high-temperature ceramic metamaterials . J. Mater. Res. 33 , 360 – 371 ( 2018 ). 

  47. 47 Meza L. R. , Phlipot G. P. , Portela C. M. , Maggi A. , Montemayor L. C. , Comella A. , Kochmann D. M. , Greer J. R. , Reexamining the mechanical property space of three-dimensional lattice architectures . Acta Mater. 140 , 424 – 432 ( 2017 ). 

  48. 48 Messner M. C. , Optimal lattice-structured materials . J. Mech. Phys. Solids 96 , 162 – 183 ( 2016 ). 

  49. 49 Mullins L. , Softening of rubber by deformation . Rubber Chem. Technol. 42 , 339 – 362 ( 1969 ). 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로