$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Dynamics and control of spar‐type floating offshore wind turbines with tuned liquid column dampers 원문보기

Structural control and health monitoring, v.27 no.6, 2020년, pp.e2532 -   

Zhang, Zili (Department of Engineering, Aarhus University, Aarhus, Denmark) ,  Høeg, Christian (Department of Engineering, Aarhus University, Aarhus, Denmark)

Abstract AI-Helper 아이콘AI-Helper

SummaryThis paper investigates the use of tuned liquid column dampers (TLCDs) for vibration control of spar‐type floating offshore wind turbines (FOWTs). A 17‐degree‐of‐freedom (17‐DOF) aero‐hydro‐servo‐elastic model for the FOWT is first established u...

주제어

참고문헌 (50)

  1. Jonkman J . Dynamic modelling and load analysis of an offshore floating wind turbine . PhD thesis . Boulder, USA : University of Colorado; 2007 . 

  2. Pérez‐Collazo C , Greaves D , Iglesias G . A review of combined wave and offshore wind energy . Renew Sust Energ Rev . 2015 ; 42 : 141 ‐ 153 . 

  3. Jonkman JM , Matha D . Dynamics of offshore floating wind turbines‐analysis of three concepts . Wind Energy . 2011 ; 14 ( 4 ): 557 ‐ 569 . 

  4. WindEurope . Floating Offshore Wind Vision Statement Technical report ; 2017 . 

  5. Hansen MH . Aeroelastic instability problems for wind turbines . Wind Energy . 2007 ; 10 ( 6 ): 551 ‐ 577 . 

  6. Zhang Z , Nielsen SRK , Blaabjerg F , Zhou D . Dynamics and control of lateral tower vibrations in offshore wind turbines by means of active generator torque . Energies . 2014 ; 7 : 7746 ‐ 7772 . 

  7. Chen L , Basu B . Wave‐current interaction effects on structural responses of floating offshore wind turbines . Wind Energy . 2019 ; 22 ( 2 ): 327 ‐ 339 . 

  8. Chen L , Basu B , Nielsen SRK . A coupled finite difference mooring dynamics model for floating offshore wind turbine analysis . Ocean Eng . 2018 ; 162 : 304 ‐ 315 . 

  9. Jonkman J , Matha D . A quantitative comparison of the responses of three floating platforms National Renewable Energy Laboratory . Colorado : Golden ; 2010 . 

  10. Staino A , Basu B . Emerging trends in vibration control of wind turbines: a focus on a dual control strategy . Philos Trans R Soc A‐Math Phys Eng Sci . 2015 ; 28 ( 373 ):20140069. 2035. 

  11. Larsen TJ , Hanson TD . A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine . J Phys Conf Ser . 2007 ;012073: 75 . 

  12. Jonkman J . Influence of control on the pitch damping of a floating wind turbine. 46th AIAA Aerospace Sciences Meeting and Exhibit . USA : Nevada ; 2008 . 

  13. Namik H , Stol K . Individual blade pitch control of floating wind turbines . Wind Energy . 2010 ; 13 : 74 ‐ 85 . 

  14. Goupee AJ , Kimball RW , Dagher HJ . Experimental observations of active blade pitch and generator control influence on floating wind turbine response . Renew Energy . 2017 ; 104 : 9 ‐ 19 . 

  15. Argyriadis K , Hille N . Determination of fatigue loading on a wind turbine with oil damping device . In: Proceedings of the European Wind Energy Conference & Exhibition; 2004 ; London UK : 2004 . 

  16. Staino A , Basu B , Nielsen SRK . Actuator control of edgewise vibrations in wind turbine blades . J Sound Vibr . 2012 ; 331 ( 6 ): 1233 ‐ 1256 . 

  17. Zhang Z , Chen J , Li J . Theoretical study and experimental verification of vibration control of offshore wind turbines by a ball vibration absorber . J Sound Vib Struct Infrast Eng . 2014 ; 10 ( 8 ): 1087 ‐ 1100 . 

  18. Zhang Z , Li J , Nielsen SRK , Basu B . Mitigation of edgewise vibrations in wind turbine blades by means of roller dampers . J Sound Vibr . 2014 ; 333 ( 21 ): 5283 ‐ 5298 . 

  19. Zhang Z , Basu B , Nielsen SRK . Tuned liquid column dampers for mitigation of edgewise vibrations in rotating wind turbine blades . Struct Control Health Monit . 2014 ; 22 : 500 ‐ 517 . 

  20. Basu B , Zhang Z , Nielsen SRK . Damping of edgewise vibration in wind turbine blades by means of circular liquid dampers . Wind Energy . 2016 ; 19 ( 2 ): 213 ‐ 226 . 

  21. Zhang Z , Nielsen SRK , Basu B , Li J . Nonlinear modeling of tuned liquid dampers (TLDs) in rotating wind turbine blades for damping edgewise vibrations . J Fluids Struct . 2015 ; 59 : 252 ‐ 269 . 

  22. Arrigan J , Pakrashi V , Basu B , Nagarajaiah S . Control of flapwise vibrations in wind turbine blades using semi‐active tuned mass dampers . Struct Control Health Monit . 2011 ; 18 ( 8 ): 840 ‐ 851 . 

  23. Fitzgerald B , Basu B , Nielsen SRK . Active tuned mass dampers for control of in‐plane vibrations of wind turbine blades . Struct Control Health Monit . 2013 ; 20 ( 12 ): 1377 ‐ 1396 . 

  24. Krenk S , Svendsen MN , Høgsberg J . Resonant vibration control of three‐bladed wind turbine rotors . AIAA J . 2012 ; 50 ( 1 ): 148 ‐ 161 . 

  25. Lackner MA , Rotea MA . Passive structural control of offshore wind turbines . Wind energy . 2011 ; 14 ( 3 ): 373 ‐ 388 . 

  26. Colwell S , Basu B . Tuned liquid column dampers in offshore wind turbines for structural control . Eng Struct . 2009 ; 31 ( 2 ): 358 ‐ 368 . 

  27. Zhang Z , Staino A , Basu B , Nielsen SRK . Performance evaluation of full‐scale tuned liquid dampers (TLDs) for vibration control of large wind turbines using real‐time hybrid testing . Eng Struct . 2016 ; 126 : 417 ‐ 431 . 

  28. Brodersen ML , Høgsberg J . Hybrid damper with stroke amplification for damping of offshore wind turbines . Wind Energy . 2016 ; 19 ( 3 ): 2223 ‐ 2238 . 

  29. Brodersen ML , Ou G , Høgsberg J , Dyke S . Analysis of hybrid viscous damper by real time hybrid simulations . Eng Struct . 2016 ; 126 : 675 ‐ 688 . 

  30. Lackner MA , Rotea MA . Structural control of floating wind turbines . Mechatronics . 2011 ; 21 ( 4 ): 704 ‐ 719 . 

  31. Si Y , Karimi HR , Gao H . Modelling and optimization of a passive structural control design for a spar‐type floating wind turbine . Eng Struct . 2014 ; 69 : 168 ‐ 182 . 

  32. Dinh VN , Basu B . Passive control of floating offshore wind turbine nacelle and spar vibrations by multiple tuned mass dampers . Struct Control Health Monit . 2015 ; 22 ( 1 ): 152 ‐ 176 . 

  33. Dinh VN , Basu B , Nagarajaiah S . Semi‐active control of vibrations of spar type floating offshore wind turbines . Smart Struct Syst . 2016 ; 18 ( 4 ): 683 ‐ 705 . 

  34. Hu Y , He E . Active structural control of a floating wind turbine with a stroke‐limited hybrid mass damper . J Sound Vibr . 2017 ; 410 : 447 ‐ 472 . 

  35. Fujii K , Tamura Y , Sato T , Wakahara T . Wind‐induced vibration of tower and practical applications of tuned sloshing damper . J Wind Eng Ind Aerodyn . 1990 ; 33 : 263 ‐ 272 . 

  36. Gao H , Kwok KCS , Samali B . Optimization of tuned liquid column dampers . Eng Struct . 1997 ; 19 : 476 ‐ 486 . 

  37. Balendra T , Wang CM , Rakesh G . Effectiveness of TLCD on various structural systems . Eng Struct . 1999 ; 21 ( 4 ): 291 ‐ 305 . 

  38. Won AYJ , Pires JA , Haroun MA . Stochastic seismic performance evaluation of tuned liquid column dampers . Earthq Eng Struct Dyn . 1996 ; 25 ( 11 ): 1259 ‐ 1274 . 

  39. Lee HH , Wong SH , Lee RS . Response mitigation on the offshore floating platform system with tuned liquid column damper . Ocean Eng . 2006 ; 33 ( 8‐9 ): 1118 ‐ 1142 . 

  40. Sonmez E , Nagarajaiah S , Sun C , Basu B . A study on semi‐active Tuned Liquid Column Dampers (sTLCDs) for structural response reduction under random excitations . J Sound Vibr . 2016 ; 362 : 1 ‐ 5 . 

  41. Hansen MOL . Aerodynamics of Wind Turbines . London : Earthscan ; 2008 . 

  42. Høeg C , Zhang Z . The influence of different mooring line models on the stochastic dynamic responses of floating wind turbines . J Phys Conf Ser . 2018 ; 1037 :062016. 

  43. Hasselmann K . Measurements of Wind Wave Growth and Swell Decay During the Joint North Sea Project (JONSWAP), Erganzungsheft zur Deutschen Hydrograph Z., Reihe A, No. 12 Hamburg ; 1973 . 

  44. Jonkman J , Butterfield S , Musial W , Scott G . Definition of 5‐MW reference wind turbine for offshore system development National Renewable Energy Laboratory, Technical Report . Colorado : Golden ; 2009 . 

  45. Wen YK . Equivalent linearization for hysteretic systems under random excitation . J Appl Mech . 1980 ; 47 : 150 ‐ 154 . 

  46. Jonkman J . Definition of the Floating System for Phase IV of OC3. National Renewable Energy Laboratory . Colorado : Golden ; 2010 . 

  47. Faltinsen OM . Sea Loads on Ships and Offshore Structures Cambridge university press ; 1993 . 

  48. Haslum HA , Olje U , Faltinsen OM . Alternative shape of spar platforms for use in hostile areas . In: Proceedings of Offshore Technology Conference; 1999 . 

  49. Nielsen SRK , Zhang Z . Stochastic Dynamics Aarhus University Press ; 2017 . 

  50. Fitzgerald B , Basu B . Structural control of wind turbines with soil structure interaction included . Eng Struct . 2016 ; 111 : 131 ‐ 151 . 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로