$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Functional cooperation of the glycine synthase-reductase and Wood–Ljungdahl pathways for autotrophic growth of Clostridium drakei 원문보기

Proceedings of the National Academy of Sciences of the United States of America, v.117 no.13, 2020년, pp.7516 - 7523  

Song, Yoseb (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 34141 Daejeon, Republic of Korea) ,  Lee, Jin Soo ,  Shin, Jongoh (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 34141 Daejeon, Republic of Korea) ,  Lee, Gyu Min ,  Jin, Sangrak (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 34141 Daejeon, Republic of Korea) ,  Kang, Seulgi ,  Lee, Jung-Kul (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 44919 Ulsan, Republic of Korea) ,  Kim, Dong Rip ,  Lee, Eun Yeol (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 34141 Daejeon, Republic of Korea) ,  Kim, Sun Chang ,  Cho, Suhyung (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 34141 Daejeon, Republic of Korea) ,  Kim, Donghyuk ,  Cho, Byung-Kwan (Department of Chemical Engineering, Konkuk University, 05029 Seoul, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

SignificanceDespite sharing the first four reactions, coutilization of the Wood–Ljungdahl pathway (WLP) with the glycine synthase-reductase pathway (GSRP) and reductive glycine pathway (RGP) to fix C1 compounds has remained unknown. In this study, using Clostridium drakei, we elucidated the r...

Keyword

참고문헌 (36)

  1. 1 Fuchs G. , Alternative pathways of carbon dioxide fixation: Insights into the early evolution of life? Annu. Rev. Microbiol. 65 , 631 ? 658 ( 2011 ). 21740227 

  2. 2 Bar-Even A. , Noor E. , Milo R. , A survey of carbon fixation pathways through a quantitative lens . J. Exp. Bot. 63 , 2325 ? 2342 ( 2012 ). 22200662 

  3. 3 Fast A. G. , Papoutsakis E. T. , Stoichiometric and energetic analyses of non-photosynthetic CO 2 -fixation pathways to support synthetic biology strategies for production of fuels and chemicals . Curr. Opin. Chem. Eng. 1 , 380 ? 395 ( 2012 ). 

  4. 4 Durre P. , Eikmanns B. J. , C1-carbon sources for chemical and fuel production by microbial gas fermentation . Curr. Opin. Biotechnol. 35 , 63 ? 72 ( 2015 ). 25841103 

  5. 5 Andreesen J. R. , “Acetate via glycine: A different form of acetogenesis” in Acetogenesis , Drake H.L. , Ed. ( Springer US , Boston, MA , 1994 ), pp. 568 ? 629 . 

  6. 6 Poehlein A. , The complete genome sequence of Clostridium aceticum : A missing link between Rnf- and cytochrome-containing autotrophic acetogens . MBio 6 , e01168-15 ( 2015 ). 26350967 

  7. 7 Shin J. , Song Y. , Jeong Y. , Cho B. K. , Analysis of the core genome and pan-genome of autotrophic acetogenic bacteria . Front. Microbiol. 7 , 1531 ( 2016 ). 27733845 

  8. 8 Song Y. , Determination of the genome and primary transcriptome of syngas fermenting Eubacterium limosum ATCC 8486 . Sci. Rep. 7 , 13694 ( 2017 ). 29057933 

  9. 9 Vogels G. D. , Van der Drift C. , Degradation of purines and pyrimidines by microorganisms . Bacteriol. Rev. 40 , 403 ? 468 ( 1976 ). 786256 

  10. 10 Waber L. J. , Wood H. G. , Mechanism of acetate synthesis from CO 2 by Clostridium acidiurici . J. Bacteriol. 140 , 468 ? 478 ( 1979 ). 500560 

  11. 11 Andreesen J. R. , Glycine reductase mechanism . Curr. Opin. Chem. Biol. 8 , 454 ? 461 ( 2004 ). 15450486 

  12. 12 Figueroa I. A. , Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO 2 fixation pathway . Proc. Natl. Acad. Sci. U.S.A. 115 , E92 ? E101 ( 2018 ). 29183985 

  13. 13 Tashiro Y. , Hirano S. , Matson M. M. , Atsumi S. , Kondo A. , Electrical-biological hybrid system for CO 2 reduction . Metab. Eng. 47 , 211 ? 218 ( 2018 ). 29580924 

  14. 14 Jeong Y. , Song Y. , Shin H. S. , Cho B. K. , Draft genome sequence of acid-tolerant Clostridium drakei SL1 T , a potential chemical producer through syngas fermentation . Genome Announc. 2 , e00387-14 ( 2014 ). Erratum in: Genome Announc. 3 , e01465-14 (2015) . 24831144 

  15. 15 Ragsdale S. W. , Pierce E. , Acetogenesis and the Wood-Ljungdahl pathway of CO 2 fixation . Biochim. Biophys. Acta 1784 , 1873 ? 1898 ( 2008 ). 18801467 

  16. 16 Bengelsdorf F. R. , Straub M. , Durre P. , Bacterial synthesis gas (syngas) fermentation . Environ. Technol. 34 , 1639 ? 1651 ( 2013 ). 24350425 

  17. 17 Wang S. , NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO . J. Bacteriol. 195 , 4373 ? 4386 ( 2013 ). 23893107 

  18. 18 Schuchmann K. , Muller V. , Autotrophy at the thermodynamic limit of life: A model for energy conservation in acetogenic bacteria . Nat. Rev. Microbiol. 12 , 809 ? 821 ( 2014 ). 25383604 

  19. 19 Buckel W. , Thauer R. K. , Energy conservation via electron bifurcating ferredoxin reduction and proton/Na + translocating ferredoxin oxidation . Biochim. Biophys. Acta 1827 , 94 ? 113 ( 2013 ). 22800682 

  20. 20 Okamura-Ikeda K. , Ohmura Y. , Fujiwara K. , Motokawa Y. , Cloning and nucleotide sequence of the gcv operon encoding the Escherichia coli glycine-cleavage system . Eur. J. Biochem. 216 , 539 ? 548 ( 1993 ). 8375392 

  21. 21 Kikuchi G. , Motokawa Y. , Yoshida T. , Hiraga K. , Glycine cleavage system: Reaction mechanism, physiological significance, and hyperglycinemia . Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 84 , 246 ? 263 ( 2008 ). 

  22. 22 Fonknechten N. , Clostridium sticklandii , a specialist in amino acid degradation:revisiting its metabolism through its genome sequence . BMC Genom. 11 , 555 ( 2010 ). 

  23. 23 Caspi R. , The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases . Nucleic Acids Res. 44 , D471 ? D480 ( 2016 ). 26527732 

  24. 24 The UniProt Consortium , UniProt: The universal protein knowledgebase . Nucleic Acids Res. 45 , D158 ? D169 ( 2017 ). 27899622 

  25. 25 King Z. A. , BiGG Models: A platform for integrating, standardizing and sharing genome-scale models . Nucleic Acids Res. 44 , D515 ? D522 ( 2016 ). 26476456 

  26. 26 Kanehisa M. , Goto S. , KEGG: Kyoto Encyclopedia of Genes and Genomes . Nucleic Acids Res. 28 , 27 ? 30 ( 2000 ). 10592173 

  27. 27 Schellenberger J. , Palsson B. O. , Use of randomized sampling for analysis of metabolic networks . J. Biol. Chem. 284 , 5457 ? 5461 ( 2009 ). 18940807 

  28. 28 Schellenberger J. , Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox v2.0 . Nat. Protoc. 6 , 1290 ? 1307 ( 2011 ). 21886097 

  29. 29 Megchelenbrink W. , Huynen M. , Marchiori E. , optGpSampler: An improved tool for uniformly sampling the solution-space of genome-scale metabolic networks . PLoS One 9 , e86587 ( 2014 ). 24551039 

  30. 30 Tatusova T. , Update on RefSeq microbial genomes resources . Nucleic Acids Res. 43 , D599 ? D605 ( 2015 ). 25510495 

  31. 31 Song Y. , Genome-scale analysis of syngas fermenting acetogenic bacteria reveals the translational regulation for its autotrophic growth . BMC Genom. 19 , 837 ( 2018 ). 

  32. 32 Wu M. , Life in hot carbon monoxide: The complete genome sequence of Carboxydothermus hydrogenoformans Z-2901 . PLoS Genet. 1 , e65 ( 2005 ). Erratum in: PLoS Genet. 2 , e60 (2006) . 16311624 

  33. 33 Martin W. F. , Hydrogen, metals, bifurcating electrons, and proton gradients: The early evolution of biological energy conservation . FEBS Lett. 586 , 485 ? 493 ( 2012 ). 21978488 

  34. 34 Marcellin E. , Low carbon fuels and commodity chemicals from waste gases―Systematic approach to understand energy metabolism in a model acetogen . Green Chem. 18 , 3020 ? 3028 ( 2016 ). 

  35. 35 Weghoff M. C. , Bertsch J. , Muller V. , A novel mode of lactate metabolism in strictly anaerobic bacteria . Environ. Microbiol. 17 , 670 ? 677 ( 2015 ). 24762045 

  36. 36 Jones J. B. , Stadtman T. C. , Selenium-dependent and selenium-independent formate dehydrogenases of Methanococcus vannielii . Separation of the two forms and characterization of the purified selenium-independent form . J. Biol. Chem. 256 , 656 ? 663 ( 1981 ). 7451465 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로