$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] The role of the gut microbiota on animal model reproducibility 원문보기

Animal models and experimental medicine, v.1 no.2, 2018년, pp.109 - 115  

Turner, Patricia V. (Charles River Laboratories Wilmington MA USA)

Abstract AI-Helper 아이콘AI-Helper

AbstractThe gut microbiota is composed of approximately 1010‐1014 cells, including fungi, bacteria, archaea, protozoa, viruses, and bacteriophages; their genes and their various metabolites were found throughout the gastrointestinal tract. It has co‐evolved with each species to assist ...

참고문헌 (67)

  1. 1 Jandhyala SM , Talukdar R , Subramanyam C , Vuyyuru H , Sasikala M , Reddy DN . Role of the normal gut microbiota . World J Gastroenterol . 2015 ; 21 : 8787 ‐ 8803 . 26269668 

  2. 2 Laukens D , Brinkman BM , Raes J , De Vos M , Vandenabeele P . Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design . FEMS Microbiol Rev . 2016 ; 40 : 117 ‐ 132 . 26323480 

  3. 3 Spor A , Koren O , Ley R . Unravelling the effects of the environment and host genotype on the gut microbiome . Nat Rev Microbiol . 2011 ; 9 : 279 ‐ 290 . 21407244 

  4. 4 MacFabe DF . Enteric short chain fatty acids: microbial messengers of metabolism, mitochondria, and mind: implications in autism spectrum disorders . Microbiol Ecol Health Dis . 2015 ; 26 : 28177 . 

  5. 5 Morgan XC , Huttenhower C . Chapter 12: human microbiome analysis . PLoS Comput Biol . 2012 ; 8 : e1002808 . 23300406 

  6. 6 Clarke G , Stilling RM , Kennedy PJ , Stanton C , Cryan JF , Dinan TG . Gut microbiota: the neglected endocrine organ . Mol Endocrinol . 2014 ; 28 : 1221 ‐ 1238 . 24892638 

  7. 7 Van de Wiele T , Van Praet JT , Marzorati M , Drennan MB , Elewaut D . How the microbiota shapes rheumatic diseases . Nat Rev Rheumatol . 2016 ; 12 : 398 ‐ 411 . 27305853 

  8. 8 Berg RD . The indigenous gastrointestinal microflora . Trends Microbiol . 2014 ; 4 : 430 ‐ 435 . 

  9. 9 Honda K , Littman DR . The microbiome in infectious disease and inflammation . Annu Rev Immunol . 2012 ; 30 : 759 ‐ 795 . 22224764 

  10. 10 Sekirov I , Russell SL , Antunes LC , Finlay BB . Gut microbiota in health and disease . Physiol Rev . 2010 ; 90 : 859 ‐ 904 . 20664075 

  11. 11 Kamada N , Chen GY , Inohara N , Nunez G . Control of pathogens and pathobionts by the gut microbiota . Nat Immunol . 2013 ; 14 : 685 ‐ 690 . 23778796 

  12. 12 Tung YC , Chang WT , Li S , et al. Citrus peel extracts attenuated obesity and modulated gut microbiota in mice with high‐fat diet‐induced obesity . Food Funct . 2018 https://10.1039/c7fo02066j 

  13. 13 Laserna‐Mendieta EJ , Clooney AG , Carretero‐Gomez JF , et al. Determinants of Reduced genetic capacity for butyrate synthesis by the gut microbiome in Crohn's disease and ulcerative colitis . J Crohns Colit . 2018 ; 12 : 204 ‐ 216 . 

  14. 14 Zheng X , Zhou K , Zhang Y , et al. Food withdrawal alters the gut microbiota and metabolome in mice . FASEB J . 2018 ; fj201700614R . 

  15. 15 Ma C , Han M , Heinrich B , et al. Gut microbiome‐mediated bile acid metabolism regulates liver cancer via NKT cells . Science . 2018 ; 360 . 

  16. 16 DeFilipp Z , Peled JU , Li S , et al. Third‐party fecal microbiota transplantation following allo‐HCT reconstitutes microbiome diversity . Blood Adv . 2018 ; 2 : 745 ‐ 753 . 29592876 

  17. 17 Schroeder BO , Backhed F . Signals from the gut microbiota to distant organs in physiology and disease . Nat Med . 2016 ; 22 : 1079 ‐ 1089 . 27711063 

  18. 18 Yang B , Wang Y , Qian P‐Y . Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis . BMC Bioinformatics . 2016 ; 17 : 135 . 27000765 

  19. 19 Knight R , Vrbanac A , Taylor BC , et al. Best practices for analysing microbiomes . Nat Rev Microbiol . 2018 . doi: 10.1038/s41579-018-0029-9 

  20. 20 Aroniadis OC , Brandt LJ . Intestinal microbiota and the efficacy of fecal microbiota transplantation in gastrointestinal disease . Gastroenterol Hepatol . 2014 ; 10 : 230 ‐ 237 . 

  21. 21 Mattner J , Schmidt F , Siegmund B . Faecal microbiota transplantation ‐ A clinical view . Int J Med Microbiol . 2016 ; 306 : 310 ‐ 315 . 26924753 

  22. 22 Gianotti RJ , Moss AC . Fecal microbiota transplantation: from  Clostridium difficile  to inflammatory bowel disease . Gastroenterol Hepatol . 2017 ; 13 : 209 ‐ 213 . 

  23. 23 Nguyen TL , Vieira‐Silva S , Liston A , Raes J . How informative is the mouse for human gut microbiota research? Dis Model Mech . 2015 ; 8 : 1 ‐ 16 . 25561744 

  24. 24 Flemer B , Gaci N , Borrel G , et al. Fecal microbiota variation across the lifespan of the healthy laboratory rat . Gut Microbes . 2017 ; 8 : 428 ‐ 439 . 28586297 

  25. 25 Li D , Chen H , Mao B , et al. Microbial biogeography and core microbiota of the rat digestive tract . Sci Report . 2017 ; 7 : 45840 . 

  26. 26 Wos‐Oxley ML , Bleich A , Oxley APA , et al. Comparative evaluation of establishing a human gut microbial community within rodent models . Gut Microbes . 2012 ; 3 : 234 ‐ 249 . 22572831 

  27. 27 Hildebrand F , Ebersbach T , Nielsen HB , et al. A comparative analysis of the intestinal metagenomes present in guinea pigs ( Cavia porcellus ) and humans ( Homo sapiens ) . BMC Genom . 2012 ; 13 : 514 . 

  28. 28 Lamendella R , Domingo JW , Ghosh S , Martinson J , Oerther DB . Comparative fecal metagenomics unveils unique functional capacity of the swine gut . BMC Microbiol . 2011 ; 11 : 103 . 21575148 

  29. 29 Pedersen R , Ingerslev HC , Sturek M , et al. Characterisation of gut microbiota in Ossabaw and Göttingen minipigs as models of obesity and metabolic syndrome . PLoS ONE . 2013 ; 8 : e56612 . 23437186 

  30. 30 Xiao L , Estellé J , Kiilerich P , et al. A reference gene catalogue of the pig gut microbiome . Nat Microbiol . 2016 ; 1 : 16161 . 

  31. 31 Rodrigues Hoffmann A , Proctor LM , Surette MG , Suchodolski JS . The microbiome: the trillions of microorganisms that maintain health and cause disease in humans and companion animals . Vet Pathol . 2016 ; 53 : 10 ‐ 21 . 26220947 

  32. 32 Handl S , Dowd SE , Garcia‐Mazcorro JF , Steiner JM , Suchodolski JS . Massive parallel 16s rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats . FEMS Microbol Ecol . 2011 ; 76 : 301 ‐ 310 . 

  33. 33 Middelbos IS , Vester Boler BM , Qu A , White BA , Swanson KS , Fahey GC . Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without dietary fiber using 454 pyrosequencing . PLoS ONE . 2010 ; 5 : e9768 . 20339542 

  34. 34 Swanson KS , Dowd SE , Suchodolski JS , et al. Phylogenetic and gene‐centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice . ISME J . 2011 ; 5 : 639 ‐ 649 . 20962874 

  35. 35 Garcia‐Mazcorro JF , Lanerie DJ , Dowd SE , et al. Effect of multispecies symbiotic formulation on fecal bacterial microbiota of healthy cats and dogs as evaluated by pyrosequencing . FEMS Microbiol Ecol . 2011 ; 78 : 542 ‐ 554 . 22067056 

  36. 36 McKenna P , Hoffmann C , Minkah N , et al. The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis . PLoS Pathog . 2008 Feb 8; 4 : e20 . 18248093 

  37. 37 Yildirim S , Yeoman CJ , Sipos M , et al. Characterization of the fecal microbiome from non‐human wild primates reveals species specific microbial communities . PLoS ONE . 2010 ; 5 : e13963 . 21103066 

  38. 38 Amato KR , Yeoman CJ , Cerda G , et al. Variable responses of human and non‐human primate gut microbiomes to a Western diet . Microbiome . 2015 ; 3 : 53 . 26568112 

  39. 39 Krych L , Hansen CH , Hansen AK , van den Berg FW , Nielsen DS . Quantitatively different, yet qualitatively alike: a meta‐analysis of the mouse core gut microbiome with a view towards the human gut microbiome . PLoS ONE . 2013 ; 8 : e62578 . 23658749 

  40. 40 Round JL , Mazmanian SK . The gut microbiota shapes intestinal immune responses during health and disease . Nat Rev Immunol . 2009 ; 9 : 313 ‐ 323 . 19343057 

  41. 41 Al‐Asmakh M , Zadjali F . Use of germ‐free animal models in microbiota‐related research . J Microbiol Biotechnol . 2015 ; 25 : 1583 ‐ 1588 . 26032361 

  42. 42 Begley CG , Buchan AM , Dirnagl U . Robust research: institutions must do their part for reproducibility . Nature . 2015 ; 525 : 25 ‐ 27 . 26333454 

  43. 43 Baker M . 1500 scientists lift the lid on reproducibility . Nature . 2016 ; 533 : 452 ‐ 454 . 27225100 

  44. 44 Fisher CK , Mora T , Walczak AM . Variable habitat conditions drive species covariation in the human microbiota . PLoS Comput Biol . 2017 ; 13 : e1005435 . 28448493 

  45. 45 Lozupone CA , Stombaugh JI , Gordon JI , Jansson JK , Knight R . Diversity, stability and resilience of the human gut microbiota . Nature . 2012 ; 489 : 220 ‐ 230 . 22972295 

  46. 46 Rogers GB , Kozlowska J , Keeble J , et al. Functional divergence in gastrointestinal microbiota in physically‐separated genetically identical mice . Sci Rep . 2014 ; 4 : 5437 . 24961643 

  47. 47 Clavel T , Lagkouvardos I , Blaut M , Stecher B . The mouse gut microbiome revisited: from complex diversity to model ecosystems . Int J Med Microbiol . 2016 ; 306 : 316 ‐ 327 . 26995267 

  48. 48 Arrieta MC , Walter J , Finlay BB . Human microbiota‐associated mice: a model with challenges . Cell Host Microbe . 2016 ; 19 : 575 ‐ 578 . 27173924 

  49. 49 Ericsson AC , Franklin CL . Manipulating the gut microbiota: methods and challenges . ILAR J . 2015 ; 56 : 205 ‐ 217 . 26323630 

  50. 50 Hugenholtz F , de Vos WM . Mouse models for human intestinal microbiota research: a critical evaluation . Cell Mol Life Sci . 2018 ; 75 : 149 ‐ 160 . 29124307 

  51. 51 Ericsson AC , Davis JW , Spollen W , et al. Effects of vendor and genetic background on the composition of the fecal microbiota of inbred mice . PLoS ONE . 2015 ; 10 : e0116704 . 25675094 

  52. 52 Antunes LCM , Han J , Ferreira RBR , Lolić P , Borchers CH , Finlay BB . Effect of antibiotic treatment on the intestinal metabolome . Antimicrob Agents Chemother . 2011 ; 55 : 1494 ‐ 1503 . 21282433 

  53. 53 De La Cochetière MF , Durand T , Lepage P , Bourreille A , Galmiche JP , Doré J . Resilience of the dominant human fecal microbiota upon short‐course antibiotic challenge . J Clin Microbiol . 2005 ; 43 : 5588 ‐ 5592 . 16272491 

  54. 54 Odamaki T , Kato K , Sugahara H , et al. Age‐related changes in gut microbiota composition from newborn to centenarian: a cross‐sectional study . BMC Microbiol . 2016 ; 16 : 90 . 27220822 

  55. 55 Saraswati S , Sitaraman R . Aging and the human gut microbiota‐from correlation to causality . Front Microbiol . 2015 ; 5 : 764 . 25628610 

  56. 56 Langille MG , Meehan CJ , Koenig JE , et al. Microbial shifts in the aging mouse gut . Microbiome . 2014 ; 2 : 50 . 25520805 

  57. 57 Hoy YE , Bik EM , Lawley TD , et al. Variation in taxonomic composition of the fecal microbiota in an inbred mouse strain across individuals and time . PLoS ONE . 2015 ; 10 : e0142825 . 26565698 

  58. 58 Tropini C , Earle KA , Huang KC , Sonnenburg JL . The gut microbiome: connecting spatial organization to function . Cell Host Microbe . 2017 ; 21 : 433 ‐ 442 . 28407481 

  59. 59 Hillman ET , Lu H , Yao T , Nakatsu CH . Microbial ecology along the gastrointestinal tract . Microbes Environ . 2017 ; 32 : 300 ‐ 313 . 29129876 

  60. 60 Suzuki TA , Nachman MW . Spatial heterogeneity of gut microbial composition along the gastrointestinal tract in natural populations of house mice . PLoS ONE . 2016 ; 11 : e0163720 . 27669007 

  61. 61 Zoetendal EG , Raes J , van den Bogert B , et al. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates . ISME J . 2012 ; 6 : 1415 ‐ 1426 . 22258098 

  62. 62 Thomas V , Clark J , Doré J . Fecal microbiota analysis: an overview of sample collection methods and sequencing strategies . Future Microbiol . 2015 ; 10 : 1485 ‐ 1504 . 26347019 

  63. 63 Rintala A , Pietilä S , Munukka E , et al. Gut microbiota analysis results are highly dependent on the 16S rRNA gene target region, whereas the impact of DNA extraction is minor . Biomol Tech . 2017 ; 28 : 19 ‐ 30 . 

  64. 64 Smith AJ , Clutton RE , Lilley E , Hansen KEA , Brattelid T . PREPARE: guidelines for planning animal research and testing . Lab Anim . 2018 ; 52 : 135 ‐ 141 . 28771074 

  65. 65 Kilkenny C , Browne WJ , Cuthill IC , Emerson M , Altman DG . Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research . PLoS Biol . 2010 ; 8 : e1000412 . 20613859 

  66. 66 Drucker DJ . Never waste a good crisis: confronting reproducibility in translational research . Cell Metab . 2016 ; 24 : 348 ‐ 360 . 27626191 

  67. 67 Groves T , Godlee F . Open science and reproducible research . Brit Med J . 2012 ; 344 : e4383 . 22736475 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로