$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Time Series Forecasting Based Day-Ahead Energy Trading in Microgrids: Mathematical Analysis and Simulation 원문보기

IEEE access : practical research, open solutions, v.8, 2020년, pp.63885 - 63900  

Jeong, Gyohun (Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea) ,  Park, Sangdon (Information and Electronics Research Institute, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea) ,  Hwang, Ganguk (Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea)

Abstract AI-Helper 아이콘AI-Helper

In this paper, we propose a periodic energy trading system in microgrids based on day-ahead forecasting of energy generation and consumption. In the proposed model, each noncooperative prosumer calculates her reward function under her energy change forecasting based on Gaussian process regression an...

참고문헌 (37)

  1. Li, Yang, Yang, Zhen, Li, Guoqing, Zhao, Dongbo, Tian, Wei. Optimal Scheduling of an Isolated Microgrid With Battery Storage Considering Load and Renewable Generation Uncertainties. IEEE transactions on industrial electronics : a publication of the IEEE Industrial Electronics Society, vol.66, no.2, 1565-1575.

  2. Liu, Youbo, Zuo, Kunyu, Liu, Xueqin (Amy), Liu, Junyong, Kennedy, Jason M.. Dynamic pricing for decentralized energy trading in micro-grids. Applied energy, vol.228, 689-699.

  3. Lee, Jaehwa, Zhang, Pengfei, Gan, Leong Kit, Howey, David A., Osborne, Michael A., Tosi, Alessandra, Duncan, Stephen. Optimal Operation of an Energy Management System Using Model Predictive Control and Gaussian Process Time-Series Modeling. IEEE journal of emerging and selected topics in power electronics, vol.6, no.4, 1783-1795.

  4. Choi, Jongwoo, Shin, Youngmee, Choi, Moonok, Park, Wan-Ki, Lee, Il-Woo. Robust Control of a Microgrid Energy Storage System Using Various Approaches. IEEE transactions on smart grid, vol.10, no.3, 2702-2712.

  5. Machine Learning Summer School Gaussian processes in machine learning rasmussen 2003 

  6. Jeong, Gyohun, Park, Sangdon, Lee, Joohyung, Hwang, Ganguk. Energy Trading System in Microgrids With Future Forecasting and Forecasting Errors. IEEE access : practical research, open solutions, vol.6, 44094-44106.

  7. Proc Int Conf Intell Decision Technol GEFCOM 2014—Probabilistic electricity price forecasting barta 2017 

  8. Li, Yang, Yang, Zhen, Li, Guoqing, Mu, Yunfei, Zhao, Dongbo, Chen, Chen, Shen, Bo. Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing. Applied energy, vol.232, 54-68.

  9. Yunpeng Wang, Saad, Walid, Zhu Han, Poor, H. Vincent, Basar, Tamer. A Game-Theoretic Approach to Energy Trading in the Smart Grid. IEEE transactions on smart grid, vol.5, no.3, 1439-1450.

  10. Sangdon Park, Joohyung Lee, Sohee Bae, Ganguk Hwang, Jun Kyun Choi. Contribution-Based Energy-Trading Mechanism in Microgrids for Future Smart Grid: A Game Theoretic Approach. IEEE transactions on industrial electronics : a publication of the IEEE Industrial Electronics Society, vol.63, no.7, 4255-4265.

  11. Joohyung Lee, Jun Guo, Jun Kyun Choi, Zukerman, Moshe. Distributed Energy Trading in Microgrids: A Game-Theoretic Model and Its Equilibrium Analysis. IEEE transactions on industrial electronics : a publication of the IEEE Industrial Electronics Society, vol.62, no.6, 3524-3533.

  12. Hu, Mian, Wang, Yan-Wu, Lin, Xiangning, Shi, Yang. A Decentralized Periodic Energy Trading Framework for Pelagic Islanded Microgrids. IEEE transactions on industrial electronics : a publication of the IEEE Industrial Electronics Society, vol.67, no.9, 7595-7605.

  13. Wang, Huiwei, Huang, Tingwen, Liao, Xiaofeng, Abu-Rub, Haitham, Chen, Guo. Reinforcement Learning in Energy Trading Game Among Smart Microgrids. IEEE transactions on industrial electronics : a publication of the IEEE Industrial Electronics Society, vol.63, no.8, 5109-5119.

  14. Kumar, U., Jain, V.K.. Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India. Energy : technologies, resources, reserves, demands, impact, conservation, management, policy, vol.35, no.4, 1709-1716.

  15. Pao, H.T.. Forecasting energy consumption in Taiwan using hybrid nonlinear models. Energy : technologies, resources, reserves, demands, impact, conservation, management, policy, vol.34, no.10, 1438-1446.

  16. Kankal, Murat, Akpınar, Adem, Kömürcü, Murat İhsan, Özşahin, Talat Şükrü. Modeling and forecasting of Turkey’s energy consumption using socio-economic and demographic variables. Applied energy, vol.88, no.5, 1927-1939.

  17. Neto, A.H., Fiorelli, F.A.S.. Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption. Energy and buildings, vol.40, no.12, 2169-2176.

  18. Ahmad, A.S., Hassan, M.Y., Abdullah, M.P., Rahman, H.A., Hussin, F., Abdullah, H., Saidur, R.. A review on applications of ANN and SVM for building electrical energy consumption forecasting. Renewable & sustainable energy reviews, vol.33, 102-109.

  19. Golestaneh, Faranak, Pinson, Pierre, Gooi, H. B.. Very Short-Term Nonparametric Probabilistic Forecasting of Renewable Energy Generation— With Application to Solar Energy. IEEE transactions on power systems : a publication of the Power Engineering Society, vol.31, no.5, 3850-3863.

  20. Farhangi, H.. The path of the smart grid. IEEE power & energy magazine, vol.8, no.1, 18-28.

  21. Chen, C., Duan, S., Cai, T., Liu, B.. Online 24-h solar power forecasting based on weather type classification using artificial neural network. Solar energy, vol.85, no.11, 2856-2870.

  22. Massoud Amin, S., Wollenberg, B.F.. Toward a smart grid: power delivery for the 21st century. IEEE power & energy magazine, vol.3, no.5, 34-41.

  23. Gungor, V. C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., Hancke, G. P.. Smart Grid Technologies: Communication Technologies and Standards. IEEE transactions on industrial informatics, vol.7, no.4, 529-539.

  24. Lu, Xiaozhen, Xiao, Xingyu, Xiao, Liang, Dai, Canhuang, Peng, Mugen, Poor, H. Vincent. Reinforcement Learning-Based Microgrid Energy Trading With a Reduced Power Plant Schedule. IEEE Internet of things journal : a joint publication of the IEEE Sensors Council, the IEEE Communications Society, the IEEE Computer Society, the IEEE Signal Processing Society, vol.6, no.6, 10728-10737.

  25. Fang, Xi, Misra, Satyajayant, Xue, Guoliang, Yang, Dejun. Smart Grid — The New and Improved Power Grid: A Survey. IEEE Communications surveys and tutorials, vol.14, no.4, 944-980.

  26. 10.1109/iccw.2011.5963577 

  27. Mathiesen, B.V., Lund, H., Connolly, D., Wenzel, H., Østergaard, P.A., Möller, B., Nielsen, S., Ridjan, I., Karnøe, P., Sperling, K., Hvelplund, F.K.. Smart Energy Systems for coherent 100% renewable energy and transport solutions. Applied energy, vol.145, 139-154.

  28. Hossain, M.S., Madlool, N.A., Rahim, N.A., Selvaraj, J., Pandey, A.K., Khan, A.F.. Role of smart grid in renewable energy: An overview. Renewable & sustainable energy reviews, vol.60, 1168-1184.

  29. Chakraborty, S., Nakamura, S., Okabe, T.. Real-time energy exchange strategy of optimally cooperative microgrids for scale-flexible distribution system. Expert systems with applications, vol.42, no.10, 4643-4652.

  30. Panwar, N.L., Kaushik, S.C., Kothari, Surendra. Role of renewable energy sources in environmental protection: A review. Renewable & sustainable energy reviews, vol.15, no.3, 1513-1524.

  31. Baczynski, D., Parol, M.. Influence of artificial neural network structure on quality of short-term electric energy consumption forecast. IEE proceedings: Generation, transmission, and distribution, vol.151, no.2, 241-245.

  32. Shu Fan, Liao, J.R., Yokoyama, R., Luonan Chen, Wei-Jen Lee. Forecasting the Wind Generation Using a Two-Stage Network Based on Meteorological Information. IEEE transactions on energy conversion, vol.24, no.2, 474-482.

  33. Foley, A.M., Leahy, P.G., Marvuglia, A., McKeogh, E.J.. Current methods and advances in forecasting of wind power generation. Renewable energy, vol.37, no.1, 1-8.

  34. Can Wan, Zhao Xu, Pinson, Pierre, Zhao Yang Dong, Kit Po Wong. Probabilistic Forecasting of Wind Power Generation Using Extreme Learning Machine. IEEE transactions on power systems : a publication of the Power Engineering Society, vol.29, no.3, 1033-1044.

  35. 10.1109/PCT.2007.4538398 

  36. Sobri, Sobrina, Koohi-Kamali, Sam, Rahim, Nasrudin Abd.. Solar photovoltaic generation forecasting methods: A review. Energy conversion and management, vol.156, 459-497.

  37. 10.1109/SmartGridComm.2012.6486039 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로