최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of computational physics, v.411, 2020년, pp.109410 -
Ejtehadi, Omid (School of Mechanical and Aerospace Engineering, ACTRC & ReCAPT, Gyeongsang National University) , Myong, R.S. (School of Mechanical and Aerospace Engineering, ACTRC & ReCAPT, Gyeongsang National University)
Abstract A modal discontinuous Galerkin method was developed for computing compressible rarefied gaseous flows interacting with rigid particles and granular medium. In contrast to previous particle-based models that were developed to handle rarefied flows or solid phase particles, the present compu...
Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. Miura 373 1982 On a dusty-gas shock tube
Int. J. Multiph. Flow Igra 11 121 1985 10.1016/0301-9322(85)90040-0 The effect of dust and water droplets on the relaxation zone developed behind strong normal shock waves
J. Comput. Phys. Toumi 124 286 1996 10.1006/jcph.1996.0060 An approximate linearized Riemann solver for a two-fluid model
J. Comput. Phys. Tiselj 136 503 1997 10.1006/jcph.1997.5778 Modelling of two-phase flow with second-order accurate scheme
J. Comput. Phys. Sainsaulieu 121 1 1995 10.1006/jcph.1995.1176 Finite volume approximation of two phase-fluid flows based on an approximate Roe-type Riemann solver
J. Fluids Eng. Igra 121 908 1999 10.1115/1.2823554 Dusty gas flow in a converging-diverging nozzle
J. Comput. Phys. Saito 176 129 2002 10.1006/jcph.2001.6971 Numerical analysis of dusty-gas flows
Shock Waves Saito 13 299 2003 10.1007/s00193-003-0217-y Numerical investigations of shock waves in gas-particle mixtures
SIAM J. Sci. Comput. Pelanti 28 1335 2006 10.1137/050635018 High-resolution finite volume methods for dusty gas jets and plumes
Int. J. Multiph. Flow Vie 79 144 2016 10.1016/j.ijmultiphaseflow.2015.10.010 Particle-laden flows forced by the disperse phase: comparison between Lagrangian and Eulerian simulations
Ind. Eng. Chem. Fundam. Anderson 6 527 1967 10.1021/i160024a007 Fluid mechanical description of fluidized beds. Equations of motion
AIChE J. Tsuo 36 885 1990 10.1002/aic.690360610 Computation of flow patterns in circulating fluidized beds
Chem. Eng. Sci. Kuipers 47 1913 1992 10.1016/0009-2509(92)80309-Z A numerical model of gas-fluidized beds
J. Fluid Mech. Lun 140 223 1984 10.1017/S0022112084000586 Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield
Phys. Fluids A, Fluid Dyn. Reeks 5 750 1993 10.1063/1.858658 On the constitutive relations for dispersed particles in nonuniform flows. I: Dispersion in a simple shear flow
Gidaspow 1994 Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions
Ind. Eng. Chem. Res. Gantt 45 6721 2006 10.1021/ie051267f Kinetic theory of granular flow limitations for modeling high-shear mixing
Chem. Eng. Sci. Schneiderbauer 80 279 2012 10.1016/j.ces.2012.06.041 A comprehensive frictional-kinetic model for gas-particle flows: analysis of fluidized and moving bed regimes
J. Fluid Mech. Houim 789 166 2016 10.1017/jfm.2015.728 A multiphase model for compressible granular-gaseous flows: formulation and initial tests
Powder Technol. Busch 2020 10.1016/j.powtec.2020.01.043 On the validity of the two-fluid-KTGF approach for dense gravity-driven granular flows
J. Comput. Phys. Desjardins 227 2514 2008 10.1016/j.jcp.2007.10.026 A quadrature-based moment method for dilute fluid-particle flows
J. Comput. Phys. Fox 228 7771 2009 10.1016/j.jcp.2009.07.018 Higher-order quadrature-based moment methods for kinetic equations
J. Comput. Multiph. Flows Sabat 6 3 247 2014 10.1260/1757-482X.6.3.247 On the development of high order realizable schemes for the Eulerian simulation of disperse phase flows on unstructured grids: a convex-state preserving discontinuous Galerkin method
J. Comput. Phys. Liu 386 264 2019 10.1016/j.jcp.2018.12.040 A unified gas-kinetic scheme for continuum and rarefied flows VI: dilute disperse gas-particle multiphase system
J. Geophys. Res., Planets Metzger 116 2011 10.1029/2010JE003745 Phenomenology of soil erosion due to rocket exhaust on the Moon and the Mauna Kea lunar test site
Gorman 2019 Dr Space Junk vs The Universe: Archaeology and the Future
J. Aerosol Sci. Abouali 42 65 2011 10.1016/j.jaerosci.2010.11.006 Numerical investigation of the flow field and cut-off characteristics of supersonic/hypersonic impactors
Shu 371 2016 Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations Discontinuous Galerkin methods for time-dependent convection dominated problems: basics, recent developments and comparison with other methods
J. Comput. Phys. Bassi 131 267 1997 10.1006/jcph.1996.5572 A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations
J. Comput. Phys. Cockburn 141 199 1998 10.1006/jcph.1998.5892 The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems
Comput. Fluids Kontzialis 71 98 2013 10.1016/j.compfluid.2012.10.009 High order discontinuous Galerkin discretizations with a new limiting approach and positivity preservation for strong moving shocks
J. Comput. Phys. You 395 223 2019 10.1016/j.jcp.2019.06.015 Direct reconstruction method for discontinuous Galerkin methods on higher-order mixed-curved meshes I. Volume integration
Int. J. Numer. Methods Fluids Giraldo 56 899 2008 10.1002/fld.1562 A high-order triangular discontinuous Galerkin oceanic shallow water model
J. Comput. Phys. Iannelli 230 260 2011 10.1016/j.jcp.2010.09.025 An implicit Galerkin finite element Runge-Kutta algorithm for shock-structure investigations
Comput. Fluids Li 159 316 2017 10.1016/j.compfluid.2017.10.016 A new vertex-based limiting approach for nodal discontinuous Galerkin methods on arbitrary unstructured meshes
J. Comput. Phys. Boscheri 398 2019 10.1016/j.jcp.2019.108899 High order direct Arbitrary-Lagrangian-Eulerian (ALE) PNPM schemes with WENO Adaptive-Order reconstruction on unstructured meshes
Cockburn 3 2000 Discontinuous Galerkin Methods The development of discontinuous Galerkin methods
Appl. Numer. Math. Sun 52 273 2005 10.1016/j.apnum.2004.08.035 Discontinuous Galerkin methods for coupled flow and reactive transport problems
Comput. Methods Appl. Mech. Eng. Klieber 196 404 2006 10.1016/j.cma.2006.05.007 Adaptive simulations of two-phase flow by discontinuous Galerkin methods
J. Comput. Phys. Owkes 249 275 2013 10.1016/j.jcp.2013.04.036 A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows
Appl. Math. Comput. Diehl 272 309 2016 Numerical solution of Navier-Stokes-Korteweg systems by local discontinuous Galerkin methods in multiple space dimensions
J. Comput. Phys. Dumbser 319 163 2016 10.1016/j.jcp.2016.05.002 A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes
J. Comput. Phys. Moortgat 315 476 2016 10.1016/j.jcp.2016.03.054 Mixed-hybrid and vertex-discontinuous-Galerkin finite element modeling of multiphase compositional flow on 3D unstructured grids
J. Comput. Phys. Le 273 160 2014 10.1016/j.jcp.2014.05.013 A triangular discontinuous Galerkin method for non-Newtonian implicit constitutive models of rarefied and microscale gases
Comput. Fluids Xiao 105 179 2014 10.1016/j.compfluid.2014.09.027 Computational simulations of microscale shock-vortex interaction using a mixed discontinuous Galerkin method
Comput. Fluids Raj 157 146 2017 10.1016/j.compfluid.2017.08.026 A super-parallel mixed explicit discontinuous Galerkin method for the second-order Boltzmann-based constitutive models of rarefied and microscale gases
Phys. Fluids Singh 30 2018 10.1063/1.5009122 Non-equilibrium effects of diatomic and polyatomic gases on the shock-vortex interaction based on the second-order constitutive model of the Boltzmann-Curtiss equation
Int. J. Multiph. Flow Ejtehadi 104 125 2018 10.1016/j.ijmultiphaseflow.2018.03.004 Complex wave patterns in dilute gas-particle flows based on a novel discontinuous Galerkin scheme
J. Comput. Fluid Engrg. Ejtehadi 24 19 2019 10.6112/kscfe.2019.24.1.019 Numerical investigation of the counter-intuitive behavior of Mach disk movement in underexpanded gas-particle jets
J. Comput. Phys. Myong 168 47 2001 10.1006/jcph.2000.6678 A computational method for Eu's generalized hydrodynamic equations of rarefied and microscale gasdynamics
J. Comput. Phys. Myong 195 655 2004 10.1016/j.jcp.2003.10.015 A generalized hydrodynamic computational model for rarefied and microscale diatomic gas flows
Myong 2018 Advances in Some Hypersonic Vehicles Technologies Numerical simulation of hypersonic rarefied flows using the second-order constitutive model of the Boltzmann equation
Phys. Fluids Rana 28 2016 10.1063/1.4959202 Microscopic molecular dynamics characterization of the second-order non-Navier-Fourier constitutive laws in the Poiseuille gas flow
Stubbs
Acta Astronaut. He 70 100 2012 10.1016/j.actaastro.2011.07.014 Simulation of rocket plume and lunar dust using DSMC method
Morris 189 2012 Earth and Space 2012: Engineering, Science, Construction, and Operations in Challenging Environments Modeling the interaction between a rocket plume, scoured regolith, and a plume deflection fence
J. Spacecr. Rockets Morris 52 362 2015 10.2514/1.A33058 Approach for modeling rocket plume impingement and dust dispersal on the moon
Burt 1351 2004 42nd AIAA Aerospace Sciences Meeting and Exhibit Development of a two-way coupled model for two phase rarefied flows
Phys. Fluids Gallis 13 3482 2001 10.1063/1.1409367 An approach for simulating the transport of spherical particles in a rarefied gas flow via the direct simulation Monte Carlo method
Gimelshein 766 2004 43rd AIAA Aerospace Sciences Meeting and Exhibit The influence of particulates on thruster plume/shock layer interaction at high altitudes
Liu 1161 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition On rocket plume, lunar crater and lunar dust interactions
AIAA J. Wright 36 1603 1998 10.2514/2.586 Data-parallel line relaxation method for the Navier-Stokes equations
A. Rahimi, O. Ejtehadi, K.H. Lee, R.S. Myong, Near-field plume-surface interaction and regolith erosion and dispersal during the lunar landing, in review.
J. Fluid Mech. Ishii 203 475 1989 10.1017/S0022112089001552 Numerical analysis of gas-particle two-phase flows
Shock Waves Kim 1 65 1991 10.1007/BF01414869 Reflection of shock wave from a compression corner in a particle-laden gas region
Int. J. Multiph. Flow Igra 30 1139 2004 10.1016/j.ijmultiphaseflow.2004.05.008 Shock wave reflection from a wedge in a dusty gas
J. Chem. Phys. Curtiss 75 376 1981 10.1063/1.441792 The classical Boltzmann equation of a gas of diatomic molecules
Contin. Mech. Thermodyn. Myong 21 389 2009 10.1007/s00161-009-0112-6 Coupled nonlinear constitutive models for rarefied and microscale gas flows: subtle interplay of kinematics and dissipation effects
Phys. Fluids Myong 26 2014 10.1063/1.4875587 On the high Mach number shock structure singularity caused by overreach of Maxwellian molecules
Eu 1992 Kinetic Theory and Irreversible Thermodynamics
Phys. Fluids Eu 13 744 2001 10.1063/1.1343908 Generalized hydrodynamics, bulk viscosity, and sound wave absorption and dispersion in dilute rigid molecular gases
Phys. Rev. Onsager 37 405 1931 10.1103/PhysRev.37.405 Reciprocal relations in irreversible processes. I
Chapman 1970 The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases
Hansen 1990 Theory of Simple Liquids
J. Chem. Phys. Carnahan 51 635 1969 10.1063/1.1672048 Equation of state for nonattracting rigid spheres
J. Chem. Phys. Ma 84 3449 1986 10.1063/1.450229 An equation of state for dense rigid sphere gases
J. Phys. Chem. Song 93 6916 1989 10.1021/j100356a008 Why does the Carnahan-Starling equation work so well?
Phys. Rev. Alder 127 359 1962 10.1103/PhysRev.127.359 Phase transition in elastic disks
Ann. N.Y. Acad. Sci. Woodcock 371 274 1981 10.1111/j.1749-6632.1981.tb55457.x
Reed 1973 Technical Report LA-UR-73-479 Triangular mesh methods for the neutron transport equation
RAIRO. Model. Math. Anal. Numer. Cockburn 25 337 1988 10.1051/m2an/1991250303371 The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws
Math. Comput. Cockburn 52 411 1989 TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework
J. Sci. Comput. Dubiner 6 345 1991 10.1007/BF01060030 Spectral methods on triangles and other domains
Rusanov 1962 Calculation of Interaction of Non-steady Shock Waves with Obstacles
J. Comput. Phys. Nishikawa 227 2560 2008 10.1016/j.jcp.2007.11.003 Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers
J. Comput. Phys. Liou 107 23 1993 10.1006/jcph.1993.1122 A new flux splitting scheme
J. Comput. Phys. Liou 214 137 2006 10.1016/j.jcp.2005.09.020 A sequel to AUSM, Part II: AUSM+-up for all speeds
Arnold 89 2000 Discontinuous Galerkin Methods Discontinuous Galerkin methods for elliptic problems
SIAM J. Numer. Anal. Arnold 39 1749 2002 10.1137/S0036142901384162 Unified analysis of discontinuous Galerkin methods for elliptic problems
SIAM J. Numer. Anal. Cockburn 35 2440 1998 10.1137/S0036142997316712 The local discontinuous Galerkin method for time-dependent convection-diffusion systems
Toro 472 1989 Numerical Combustion Riemann-problem-based techniques for computing reactive two-phased flows
J. Comput. Phys. Saurel 150 425 1999 10.1006/jcph.1999.6187 A multiphase Godunov method for compressible multifluid and multiphase flows
Powell 1704 1995 12th Computational Fluid Dynamics Conference An upwind scheme for magnetohydrodynamics
J. Comput. Phys. Powell 154 284 1999 10.1006/jcph.1999.6299 A solution-adaptive upwind scheme for ideal magnetohydrodynamics
J. Comput. Phys. Janhunen 160 649 2000 10.1006/jcph.2000.6479 A positive conservative method for magnetohydrodynamics based on HLL and Roe methods
Comput. Fluids Jung 86 459 2013 10.1016/j.compfluid.2013.08.001 A second-order positivity-preserving finite volume upwind scheme for air-mixed droplet flow in atmospheric icing
J. Comput. Phys. Zhang 230 1238 2011 10.1016/j.jcp.2010.10.036 Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms
J. Comput. Phys. Zhang 229 3091 2010 10.1016/j.jcp.2009.12.030 On maximum-principle-satisfying high order schemes for scalar conservation laws
Barth 1989 27th Aerospace Sciences Meeting The design and application of upwind schemes on unstructured meshes
Combust. Explos. Shock Waves Fedorov 43 104 2007 10.1007/s10573-007-0015-4 Reflection of a shock wave in a dusty cloud
AIAA J. Lewis 2 776 1964 10.2514/3.2409 Normal shock location in underexpanded gas and gas-particle jets
AIAA J. Crist 4 68 1966 10.2514/3.3386 Study of the highly underexpanded sonic jet
Shock Waves Sommerfeld 3 299 1994 10.1007/BF01415828 The structure of particle-laden, underexpanded free jets
Fluid Dyn. Avduevskii 5 409 1970 10.1007/BF01019275 Flow in supersonic viscous under expanded jet
Prog. Aerosp. Sci. Franquet 77 25 2015 10.1016/j.paerosci.2015.06.006 Free underexpanded jets in a quiescent medium: a review
Land 1965 Experimental Investigation of Jet Impingement on Surfaces of Fine Particles in a Vacuum Environment
Morris 2012 Simulation of rocket plume impingement and dust dispersal on the lunar surface
Mitchell 3235 1972 Lunar and Planetary Science Conference Proceedings Mechanical properties of lunar soil: density, porosity, cohesion and angle of internal friction
Rev. Geophys. Colwell 45 2007 10.1029/2005RG000184 Lunar surface: dust dynamics and regolith mechanics
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.