$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] A modal discontinuous Galerkin method for simulating dusty and granular gas flows in thermal non-equilibrium in the Eulerian framework

Journal of computational physics, v.411, 2020년, pp.109410 -   

Ejtehadi, Omid (School of Mechanical and Aerospace Engineering, ACTRC & ReCAPT, Gyeongsang National University) ,  Myong, R.S. (School of Mechanical and Aerospace Engineering, ACTRC & ReCAPT, Gyeongsang National University)

Abstract AI-Helper 아이콘AI-Helper

Abstract A modal discontinuous Galerkin method was developed for computing compressible rarefied gaseous flows interacting with rigid particles and granular medium. In contrast to previous particle-based models that were developed to handle rarefied flows or solid phase particles, the present compu...

Keyword

참고문헌 (112)

  1. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. Miura 373 1982 On a dusty-gas shock tube 

  2. Int. J. Multiph. Flow Igra 11 121 1985 10.1016/0301-9322(85)90040-0 The effect of dust and water droplets on the relaxation zone developed behind strong normal shock waves 

  3. J. Comput. Phys. Toumi 124 286 1996 10.1006/jcph.1996.0060 An approximate linearized Riemann solver for a two-fluid model 

  4. J. Comput. Phys. Tiselj 136 503 1997 10.1006/jcph.1997.5778 Modelling of two-phase flow with second-order accurate scheme 

  5. J. Comput. Phys. Sainsaulieu 121 1 1995 10.1006/jcph.1995.1176 Finite volume approximation of two phase-fluid flows based on an approximate Roe-type Riemann solver 

  6. J. Fluids Eng. Igra 121 908 1999 10.1115/1.2823554 Dusty gas flow in a converging-diverging nozzle 

  7. J. Comput. Phys. Saito 176 129 2002 10.1006/jcph.2001.6971 Numerical analysis of dusty-gas flows 

  8. Shock Waves Saito 13 299 2003 10.1007/s00193-003-0217-y Numerical investigations of shock waves in gas-particle mixtures 

  9. SIAM J. Sci. Comput. Pelanti 28 1335 2006 10.1137/050635018 High-resolution finite volume methods for dusty gas jets and plumes 

  10. Int. J. Multiph. Flow Vie 79 144 2016 10.1016/j.ijmultiphaseflow.2015.10.010 Particle-laden flows forced by the disperse phase: comparison between Lagrangian and Eulerian simulations 

  11. Adv. Chem. Eng. van der Hoef 31 65 2006 10.1016/S0065-2377(06)31002-2 Multiscale modeling of gas-fluidized beds 

  12. Ind. Eng. Chem. Fundam. Anderson 6 527 1967 10.1021/i160024a007 Fluid mechanical description of fluidized beds. Equations of motion 

  13. AIChE J. Tsuo 36 885 1990 10.1002/aic.690360610 Computation of flow patterns in circulating fluidized beds 

  14. Chem. Eng. Sci. Kuipers 47 1913 1992 10.1016/0009-2509(92)80309-Z A numerical model of gas-fluidized beds 

  15. J. Fluid Mech. Lun 140 223 1984 10.1017/S0022112084000586 Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield 

  16. Phys. Fluids A, Fluid Dyn. Reeks 5 750 1993 10.1063/1.858658 On the constitutive relations for dispersed particles in nonuniform flows. I: Dispersion in a simple shear flow 

  17. Gidaspow 1994 Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions 

  18. Ind. Eng. Chem. Res. Gantt 45 6721 2006 10.1021/ie051267f Kinetic theory of granular flow limitations for modeling high-shear mixing 

  19. Chem. Eng. Sci. Schneiderbauer 80 279 2012 10.1016/j.ces.2012.06.041 A comprehensive frictional-kinetic model for gas-particle flows: analysis of fluidized and moving bed regimes 

  20. J. Fluid Mech. Houim 789 166 2016 10.1017/jfm.2015.728 A multiphase model for compressible granular-gaseous flows: formulation and initial tests 

  21. Powder Technol. Busch 2020 10.1016/j.powtec.2020.01.043 On the validity of the two-fluid-KTGF approach for dense gravity-driven granular flows 

  22. J. Comput. Phys. Desjardins 227 2514 2008 10.1016/j.jcp.2007.10.026 A quadrature-based moment method for dilute fluid-particle flows 

  23. J. Comput. Phys. Fox 228 7771 2009 10.1016/j.jcp.2009.07.018 Higher-order quadrature-based moment methods for kinetic equations 

  24. J. Comput. Multiph. Flows Sabat 6 3 247 2014 10.1260/1757-482X.6.3.247 On the development of high order realizable schemes for the Eulerian simulation of disperse phase flows on unstructured grids: a convex-state preserving discontinuous Galerkin method 

  25. J. Comput. Phys. Liu 386 264 2019 10.1016/j.jcp.2018.12.040 A unified gas-kinetic scheme for continuum and rarefied flows VI: dilute disperse gas-particle multiphase system 

  26. J. Geophys. Res., Planets Metzger 116 2011 10.1029/2010JE003745 Phenomenology of soil erosion due to rocket exhaust on the Moon and the Mauna Kea lunar test site 

  27. Gorman 2019 Dr Space Junk vs The Universe: Archaeology and the Future 

  28. J. Aerosol Sci. Abouali 42 65 2011 10.1016/j.jaerosci.2010.11.006 Numerical investigation of the flow field and cut-off characteristics of supersonic/hypersonic impactors 

  29. Shu 371 2016 Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations Discontinuous Galerkin methods for time-dependent convection dominated problems: basics, recent developments and comparison with other methods 

  30. J. Comput. Phys. Bassi 131 267 1997 10.1006/jcph.1996.5572 A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations 

  31. J. Comput. Phys. Cockburn 141 199 1998 10.1006/jcph.1998.5892 The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems 

  32. Comput. Fluids Kontzialis 71 98 2013 10.1016/j.compfluid.2012.10.009 High order discontinuous Galerkin discretizations with a new limiting approach and positivity preservation for strong moving shocks 

  33. J. Comput. Phys. You 395 223 2019 10.1016/j.jcp.2019.06.015 Direct reconstruction method for discontinuous Galerkin methods on higher-order mixed-curved meshes I. Volume integration 

  34. Int. J. Numer. Methods Fluids Giraldo 56 899 2008 10.1002/fld.1562 A high-order triangular discontinuous Galerkin oceanic shallow water model 

  35. J. Comput. Phys. Iannelli 230 260 2011 10.1016/j.jcp.2010.09.025 An implicit Galerkin finite element Runge-Kutta algorithm for shock-structure investigations 

  36. Comput. Fluids Li 159 316 2017 10.1016/j.compfluid.2017.10.016 A new vertex-based limiting approach for nodal discontinuous Galerkin methods on arbitrary unstructured meshes 

  37. J. Comput. Phys. Boscheri 398 2019 10.1016/j.jcp.2019.108899 High order direct Arbitrary-Lagrangian-Eulerian (ALE) PNPM schemes with WENO Adaptive-Order reconstruction on unstructured meshes 

  38. Cockburn 3 2000 Discontinuous Galerkin Methods The development of discontinuous Galerkin methods 

  39. Comput. Geosci. Riviere 3 337 1999 10.1023/A:1011591328604 Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I 

  40. Appl. Numer. Math. Sun 52 273 2005 10.1016/j.apnum.2004.08.035 Discontinuous Galerkin methods for coupled flow and reactive transport problems 

  41. Comput. Methods Appl. Mech. Eng. Klieber 196 404 2006 10.1016/j.cma.2006.05.007 Adaptive simulations of two-phase flow by discontinuous Galerkin methods 

  42. J. Comput. Phys. Owkes 249 275 2013 10.1016/j.jcp.2013.04.036 A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows 

  43. Appl. Math. Comput. Diehl 272 309 2016 Numerical solution of Navier-Stokes-Korteweg systems by local discontinuous Galerkin methods in multiple space dimensions 

  44. J. Comput. Phys. Dumbser 319 163 2016 10.1016/j.jcp.2016.05.002 A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes 

  45. J. Comput. Phys. Moortgat 315 476 2016 10.1016/j.jcp.2016.03.054 Mixed-hybrid and vertex-discontinuous-Galerkin finite element modeling of multiphase compositional flow on 3D unstructured grids 

  46. J. Comput. Phys. Le 273 160 2014 10.1016/j.jcp.2014.05.013 A triangular discontinuous Galerkin method for non-Newtonian implicit constitutive models of rarefied and microscale gases 

  47. Comput. Fluids Xiao 105 179 2014 10.1016/j.compfluid.2014.09.027 Computational simulations of microscale shock-vortex interaction using a mixed discontinuous Galerkin method 

  48. Comput. Fluids Raj 157 146 2017 10.1016/j.compfluid.2017.08.026 A super-parallel mixed explicit discontinuous Galerkin method for the second-order Boltzmann-based constitutive models of rarefied and microscale gases 

  49. Phys. Fluids Singh 30 2018 10.1063/1.5009122 Non-equilibrium effects of diatomic and polyatomic gases on the shock-vortex interaction based on the second-order constitutive model of the Boltzmann-Curtiss equation 

  50. Int. J. Multiph. Flow Ejtehadi 104 125 2018 10.1016/j.ijmultiphaseflow.2018.03.004 Complex wave patterns in dilute gas-particle flows based on a novel discontinuous Galerkin scheme 

  51. J. Comput. Fluid Engrg. Ejtehadi 24 19 2019 10.6112/kscfe.2019.24.1.019 Numerical investigation of the counter-intuitive behavior of Mach disk movement in underexpanded gas-particle jets 

  52. J. Comput. Phys. Myong 168 47 2001 10.1006/jcph.2000.6678 A computational method for Eu's generalized hydrodynamic equations of rarefied and microscale gasdynamics 

  53. J. Comput. Phys. Myong 195 655 2004 10.1016/j.jcp.2003.10.015 A generalized hydrodynamic computational model for rarefied and microscale diatomic gas flows 

  54. Myong 2018 Advances in Some Hypersonic Vehicles Technologies Numerical simulation of hypersonic rarefied flows using the second-order constitutive model of the Boltzmann equation 

  55. Phys. Fluids Rana 28 2016 10.1063/1.4959202 Microscopic molecular dynamics characterization of the second-order non-Navier-Fourier constitutive laws in the Poiseuille gas flow 

  56. Stubbs 

  57. Acta Astronaut. He 70 100 2012 10.1016/j.actaastro.2011.07.014 Simulation of rocket plume and lunar dust using DSMC method 

  58. Morris 189 2012 Earth and Space 2012: Engineering, Science, Construction, and Operations in Challenging Environments Modeling the interaction between a rocket plume, scoured regolith, and a plume deflection fence 

  59. J. Spacecr. Rockets Morris 52 362 2015 10.2514/1.A33058 Approach for modeling rocket plume impingement and dust dispersal on the moon 

  60. Burt 1351 2004 42nd AIAA Aerospace Sciences Meeting and Exhibit Development of a two-way coupled model for two phase rarefied flows 

  61. Phys. Fluids Gallis 13 3482 2001 10.1063/1.1409367 An approach for simulating the transport of spherical particles in a rarefied gas flow via the direct simulation Monte Carlo method 

  62. Gimelshein 766 2004 43rd AIAA Aerospace Sciences Meeting and Exhibit The influence of particulates on thruster plume/shock layer interaction at high altitudes 

  63. Liu 1161 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition On rocket plume, lunar crater and lunar dust interactions 

  64. Morris 1187 2011 10.1063/1.3562805 AIP Conference Proceedings Plume impingement on a dusty lunar surface 

  65. AIAA J. Wright 36 1603 1998 10.2514/2.586 Data-parallel line relaxation method for the Navier-Stokes equations 

  66. A. Rahimi, O. Ejtehadi, K.H. Lee, R.S. Myong, Near-field plume-surface interaction and regolith erosion and dispersal during the lunar landing, in review. 

  67. J. Fluid Mech. Ishii 203 475 1989 10.1017/S0022112089001552 Numerical analysis of gas-particle two-phase flows 

  68. Shock Waves Kim 1 65 1991 10.1007/BF01414869 Reflection of shock wave from a compression corner in a particle-laden gas region 

  69. Int. J. Multiph. Flow Igra 30 1139 2004 10.1016/j.ijmultiphaseflow.2004.05.008 Shock wave reflection from a wedge in a dusty gas 

  70. J. Chem. Phys. Curtiss 75 376 1981 10.1063/1.441792 The classical Boltzmann equation of a gas of diatomic molecules 

  71. Contin. Mech. Thermodyn. Myong 21 389 2009 10.1007/s00161-009-0112-6 Coupled nonlinear constitutive models for rarefied and microscale gas flows: subtle interplay of kinematics and dissipation effects 

  72. Phys. Fluids Myong 26 2014 10.1063/1.4875587 On the high Mach number shock structure singularity caused by overreach of Maxwellian molecules 

  73. Eu 1992 Kinetic Theory and Irreversible Thermodynamics 

  74. Phys. Fluids Eu 13 744 2001 10.1063/1.1343908 Generalized hydrodynamics, bulk viscosity, and sound wave absorption and dispersion in dilute rigid molecular gases 

  75. Phys. Rev. Onsager 37 405 1931 10.1103/PhysRev.37.405 Reciprocal relations in irreversible processes. I 

  76. Chapman 1970 The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases 

  77. Hansen 1990 Theory of Simple Liquids 

  78. J. Chem. Phys. Carnahan 51 635 1969 10.1063/1.1672048 Equation of state for nonattracting rigid spheres 

  79. J. Chem. Phys. Ma 84 3449 1986 10.1063/1.450229 An equation of state for dense rigid sphere gases 

  80. J. Phys. Chem. Song 93 6916 1989 10.1021/j100356a008 Why does the Carnahan-Starling equation work so well? 

  81. Phys. Rev. Alder 127 359 1962 10.1103/PhysRev.127.359 Phase transition in elastic disks 

  82. Ann. N.Y. Acad. Sci. Woodcock 371 274 1981 10.1111/j.1749-6632.1981.tb55457.x 

  83. Reed 1973 Technical Report LA-UR-73-479 Triangular mesh methods for the neutron transport equation 

  84. RAIRO. Model. Math. Anal. Numer. Cockburn 25 337 1988 10.1051/m2an/1991250303371 The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws 

  85. Math. Comput. Cockburn 52 411 1989 TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework 

  86. J. Sci. Comput. Dubiner 6 345 1991 10.1007/BF01060030 Spectral methods on triangles and other domains 

  87. Rusanov 1962 Calculation of Interaction of Non-steady Shock Waves with Obstacles 

  88. J. Comput. Phys. Nishikawa 227 2560 2008 10.1016/j.jcp.2007.11.003 Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers 

  89. J. Comput. Phys. Liou 107 23 1993 10.1006/jcph.1993.1122 A new flux splitting scheme 

  90. J. Comput. Phys. Liou 214 137 2006 10.1016/j.jcp.2005.09.020 A sequel to AUSM, Part II: AUSM+-up for all speeds 

  91. Arnold 89 2000 Discontinuous Galerkin Methods Discontinuous Galerkin methods for elliptic problems 

  92. SIAM J. Numer. Anal. Arnold 39 1749 2002 10.1137/S0036142901384162 Unified analysis of discontinuous Galerkin methods for elliptic problems 

  93. SIAM J. Numer. Anal. Cockburn 35 2440 1998 10.1137/S0036142997316712 The local discontinuous Galerkin method for time-dependent convection-diffusion systems 

  94. Toro 472 1989 Numerical Combustion Riemann-problem-based techniques for computing reactive two-phased flows 

  95. J. Comput. Phys. Saurel 150 425 1999 10.1006/jcph.1999.6187 A multiphase Godunov method for compressible multifluid and multiphase flows 

  96. Powell 1704 1995 12th Computational Fluid Dynamics Conference An upwind scheme for magnetohydrodynamics 

  97. J. Comput. Phys. Powell 154 284 1999 10.1006/jcph.1999.6299 A solution-adaptive upwind scheme for ideal magnetohydrodynamics 

  98. J. Comput. Phys. Janhunen 160 649 2000 10.1006/jcph.2000.6479 A positive conservative method for magnetohydrodynamics based on HLL and Roe methods 

  99. Comput. Fluids Jung 86 459 2013 10.1016/j.compfluid.2013.08.001 A second-order positivity-preserving finite volume upwind scheme for air-mixed droplet flow in atmospheric icing 

  100. J. Comput. Phys. Zhang 230 1238 2011 10.1016/j.jcp.2010.10.036 Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms 

  101. J. Comput. Phys. Zhang 229 3091 2010 10.1016/j.jcp.2009.12.030 On maximum-principle-satisfying high order schemes for scalar conservation laws 

  102. Barth 1989 27th Aerospace Sciences Meeting The design and application of upwind schemes on unstructured meshes 

  103. Combust. Explos. Shock Waves Fedorov 43 104 2007 10.1007/s10573-007-0015-4 Reflection of a shock wave in a dusty cloud 

  104. AIAA J. Lewis 2 776 1964 10.2514/3.2409 Normal shock location in underexpanded gas and gas-particle jets 

  105. AIAA J. Crist 4 68 1966 10.2514/3.3386 Study of the highly underexpanded sonic jet 

  106. Shock Waves Sommerfeld 3 299 1994 10.1007/BF01415828 The structure of particle-laden, underexpanded free jets 

  107. Fluid Dyn. Avduevskii 5 409 1970 10.1007/BF01019275 Flow in supersonic viscous under expanded jet 

  108. Prog. Aerosp. Sci. Franquet 77 25 2015 10.1016/j.paerosci.2015.06.006 Free underexpanded jets in a quiescent medium: a review 

  109. Land 1965 Experimental Investigation of Jet Impingement on Surfaces of Fine Particles in a Vacuum Environment 

  110. Morris 2012 Simulation of rocket plume impingement and dust dispersal on the lunar surface 

  111. Mitchell 3235 1972 Lunar and Planetary Science Conference Proceedings Mechanical properties of lunar soil: density, porosity, cohesion and angle of internal friction 

  112. Rev. Geophys. Colwell 45 2007 10.1029/2005RG000184 Lunar surface: dust dynamics and regolith mechanics 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로