최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of theoretical biology, v.496, 2020년, pp.110249 -
Kim, Seyoung (Corresponding author.) , Park, Cheolhoon , Park, Chanhun
Abstract Human walking consists of two major sequential events (i.e., single- and double-support phases). Although there have been many studies relating to basic principles of the each stage, how the two distinct but continuous phases interact with each other remains to be clarified. We examined th...
J. Exp. Biol. Adamczyk 212 2668 2009 10.1242/jeb.027581 Redirection of center-of-mass velocity during the step-to-step transition of human walking
J. Exp. Biol. Adamczyk 209 3953 2006 10.1242/jeb.02455 The advantages of a rolling foot in human walking
Biol. Open Antoniak 8 2019 10.1242/bio.043695 Spring-loaded inverted pendulum goes through two contraction-extension cycles during the single-support phase of walking
Phys. Eng. Sci. Blickhan 365 199 2007 10.1098/rsta.2006.1911 Intelligence by mechanics. philosophical transactions of the royal society a: mathematical
J. Biomech. Burkhart 44 2728 2011 10.1016/j.jbiomech.2011.08.011 Determining the optimal system-specific cut-off frequencies for filtering in-vitro upper extremity impact force and acceleration data by residual analysis
Nature Collins 522 212 2015 10.1038/nature14288 Reducing the energy cost of human walking using an unpowered exoskeleton
J. Exp. Biol. Donelan 205 3717 2002 10.1242/jeb.205.23.3717 Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking
J. Biomech. Donelan 35 117 2002 10.1016/S0021-9290(01)00169-5 Simultaneous positive and negative external mechanical work in human walking
Chaos Solitons Fractals Fathizadeh 127 83 2019 10.1016/j.chaos.2019.06.018 A modified passive walking biped model with two feasible switching patterns of motion to resemble multi-pattern human walking
PLoS ONE Fekete 6 e24322 2011 10.1371/journal.pone.0024322 The nirs analysis package: noise reduction and statistical inference
Med. Sci. Sports Exerc. Fu 47 1435 2015 10.1249/MSS.0000000000000554 Soft tissue deformations contribute to the mechanics of walking in obese adults
J. Biomech. Eng. Garcia 120 281 1998 10.1115/1.2798313 The simplest walking model: stability, complexity, and scaling
Proc. R. Soc. B Geyer 273 2861 2006 10.1098/rspb.2006.3637 Compliant leg behaviour explains basic dynamics of walking and running
J. Biomech. Hong 46 77 2013 10.1016/j.jbiomech.2012.10.003 Spring-like gait mechanics observed during walking in both young and older adults
J. Appl. Physiol. Ishikawa 99 603 2005 10.1152/japplphysiol.00189.2005 Muscle-tendon interaction and elastic energy usage in human walking
J. Biomech. Kim 44 1253 2011 10.1016/j.jbiomech.2011.02.072 Leg stiffness increases with speed to modulate gait frequency and propulsion energy
J. Biomech. Kim 45 326 2012 10.1016/j.jbiomech.2011.10.009 The oscillatory behavior of the CoM facilitates mechanical energy balance between push-off and heel strike
J. Mech. Sci. Technol. Kim 32 5345 2018 10.1007/s12206-018-1033-8 Mechanical work-canceling strategy modulates initial push-off force depending on vertical jump height
J. Biomech. Kim 47 3162 2014 10.1016/j.jbiomech.2014.06.013 Countermovement strategy changes with vertical jump height to accommodate feasible force constraints
J. Neurophysiol. Kim 102 2910 2009 10.1152/jn.00206.2009 Postural feedback scaling deficits in Parkinson’s disease
Robotica Kumar 27 701 2009 10.1017/S0263574708005079 The simplest passive dynamic walking model with toed feet: a parametric study
J. Biomech. Eng. Kuo 123 264 2001 10.1115/1.1372322 A simple model of bipedal walking predicts the preferred speed-step length relationship
J. Biomech. Lee 47 319 2014 10.1016/j.jbiomech.2013.09.011 Resonance-based oscillations could describe human gait mechanics under various loading conditions
J. Theor. Biol. McGeer 163 277 1993 10.1006/jtbi.1993.1121 Dynamics and control of bipedal locomotion
J. Rehabil. Res. Dev. Orendurff 41 829 2004 10.1682/JRRD.2003.10.0150 The effect of walking speed on center of mass displacement
Exp. Brain. Res. Park 154 417 2004 10.1007/s00221-003-1674-3 Postural feedback responses scale with biomechanical constraints in human standing
J. Biomech. Petrovic 83 85 2019 10.1016/j.jbiomech.2018.11.027 Vertical displacement of the centre of mass during walking in people with diabetes and diabetic neuropathy does not explain their higher metabolic cost of walking
PLoS ONE Pickle 13 2018 10.1371/journal.pone.0206875 A comparison of stability metrics based on inverted pendulum models for assessment of ramp walking
Gait Posture Salavati 29 460 2009 10.1016/j.gaitpost.2008.11.016 Test-retest reliabty of center of pressure measures of postural stability during quiet standing in a group with musculoskeletal disorders consisting of low back pain, anterior cruciate ligament injury and functional ankle instability
IEEE Trans. Biomed. Eng. Sawicki 63 914 2016 10.1109/TBME.2015.2491224 A simple model to estimate plantarflexor muscle-tendon mechanics and energetics during walking with elastic ankle exoskeletons
J. Hum. Kinet. Sinclair 39 25 2013 10.2478/hukin-2013-0065 Digital filtering of three-dimensional lower extremity kinematics: an assessment
J. Biomech. Eng. Whittington 131 2009 10.1115/1.3005147 A simple mass-spring model with roller feet can induce the ground reactions observed in human walking
J. Biomech. Yeom 44 59 2010 10.1016/j.jbiomech.2010.08.024 A gravitational impulse model predicts collision impulse and mechanical work during a step-to-step transition
J. Exp. Biol. Zelik 213 4257 2010 10.1242/jeb.044297 Human walking isn’t all hard work: evidence of soft tissue contributions to energy dissipation and return
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.