$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Change in telescoping leg strategy with varying walking speed to modulate force advantage

Journal of theoretical biology, v.496, 2020년, pp.110249 -   

Kim, Seyoung (Corresponding author.) ,  Park, Cheolhoon ,  Park, Chanhun

Abstract AI-Helper 아이콘AI-Helper

Abstract Human walking consists of two major sequential events (i.e., single- and double-support phases). Although there have been many studies relating to basic principles of the each stage, how the two distinct but continuous phases interact with each other remains to be clarified. We examined th...

Keyword

참고문헌 (36)

  1. J. Exp. Biol. Adamczyk 212 2668 2009 10.1242/jeb.027581 Redirection of center-of-mass velocity during the step-to-step transition of human walking 

  2. J. Exp. Biol. Adamczyk 209 3953 2006 10.1242/jeb.02455 The advantages of a rolling foot in human walking 

  3. Biol. Open Antoniak 8 2019 10.1242/bio.043695 Spring-loaded inverted pendulum goes through two contraction-extension cycles during the single-support phase of walking 

  4. Phys. Eng. Sci. Blickhan 365 199 2007 10.1098/rsta.2006.1911 Intelligence by mechanics. philosophical transactions of the royal society a: mathematical 

  5. J. Biomech. Burkhart 44 2728 2011 10.1016/j.jbiomech.2011.08.011 Determining the optimal system-specific cut-off frequencies for filtering in-vitro upper extremity impact force and acceleration data by residual analysis 

  6. Nature Collins 522 212 2015 10.1038/nature14288 Reducing the energy cost of human walking using an unpowered exoskeleton 

  7. J. Exp. Biol. Donelan 205 3717 2002 10.1242/jeb.205.23.3717 Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking 

  8. J. Biomech. Donelan 35 117 2002 10.1016/S0021-9290(01)00169-5 Simultaneous positive and negative external mechanical work in human walking 

  9. Chaos Solitons Fractals Fathizadeh 127 83 2019 10.1016/j.chaos.2019.06.018 A modified passive walking biped model with two feasible switching patterns of motion to resemble multi-pattern human walking 

  10. PLoS ONE Fekete 6 e24322 2011 10.1371/journal.pone.0024322 The nirs analysis package: noise reduction and statistical inference 

  11. Med. Sci. Sports Exerc. Fu 47 1435 2015 10.1249/MSS.0000000000000554 Soft tissue deformations contribute to the mechanics of walking in obese adults 

  12. J. Biomech. Eng. Garcia 120 281 1998 10.1115/1.2798313 The simplest walking model: stability, complexity, and scaling 

  13. Proc. R. Soc. B Geyer 273 2861 2006 10.1098/rspb.2006.3637 Compliant leg behaviour explains basic dynamics of walking and running 

  14. J. Biomech. Hong 46 77 2013 10.1016/j.jbiomech.2012.10.003 Spring-like gait mechanics observed during walking in both young and older adults 

  15. J. Appl. Physiol. Ishikawa 99 603 2005 10.1152/japplphysiol.00189.2005 Muscle-tendon interaction and elastic energy usage in human walking 

  16. J. Biomech. Kim 44 1253 2011 10.1016/j.jbiomech.2011.02.072 Leg stiffness increases with speed to modulate gait frequency and propulsion energy 

  17. J. Biomech. Kim 45 326 2012 10.1016/j.jbiomech.2011.10.009 The oscillatory behavior of the CoM facilitates mechanical energy balance between push-off and heel strike 

  18. J. Mech. Sci. Technol. Kim 32 5345 2018 10.1007/s12206-018-1033-8 Mechanical work-canceling strategy modulates initial push-off force depending on vertical jump height 

  19. J. Biomech. Kim 47 3162 2014 10.1016/j.jbiomech.2014.06.013 Countermovement strategy changes with vertical jump height to accommodate feasible force constraints 

  20. J. Neurophysiol. Kim 102 2910 2009 10.1152/jn.00206.2009 Postural feedback scaling deficits in Parkinson’s disease 

  21. Robotica Kumar 27 701 2009 10.1017/S0263574708005079 The simplest passive dynamic walking model with toed feet: a parametric study 

  22. J. Biomech. Eng. Kuo 123 264 2001 10.1115/1.1372322 A simple model of bipedal walking predicts the preferred speed-step length relationship 

  23. J. Biomech. Lee 47 319 2014 10.1016/j.jbiomech.2013.09.011 Resonance-based oscillations could describe human gait mechanics under various loading conditions 

  24. J. Theor. Biol. McGeer 163 277 1993 10.1006/jtbi.1993.1121 Dynamics and control of bipedal locomotion 

  25. J. Mech. Sci. Technol. Oh 28 1393 2014 10.1007/s12206-014-0126-2 A modeling study of mechanical energetic optimality in incline walking 

  26. J. Rehabil. Res. Dev. Orendurff 41 829 2004 10.1682/JRRD.2003.10.0150 The effect of walking speed on center of mass displacement 

  27. Int. J. Precis. Eng. Manuf. Park 14 825 2013 10.1007/s12541-013-0108-9 Increase of push-off propulsion to compensate heel strike loss during step-to-step transition is limited at faster gait speeds 

  28. Exp. Brain. Res. Park 154 417 2004 10.1007/s00221-003-1674-3 Postural feedback responses scale with biomechanical constraints in human standing 

  29. J. Biomech. Petrovic 83 85 2019 10.1016/j.jbiomech.2018.11.027 Vertical displacement of the centre of mass during walking in people with diabetes and diabetic neuropathy does not explain their higher metabolic cost of walking 

  30. PLoS ONE Pickle 13 2018 10.1371/journal.pone.0206875 A comparison of stability metrics based on inverted pendulum models for assessment of ramp walking 

  31. Gait Posture Salavati 29 460 2009 10.1016/j.gaitpost.2008.11.016 Test-retest reliabty of center of pressure measures of postural stability during quiet standing in a group with musculoskeletal disorders consisting of low back pain, anterior cruciate ligament injury and functional ankle instability 

  32. IEEE Trans. Biomed. Eng. Sawicki 63 914 2016 10.1109/TBME.2015.2491224 A simple model to estimate plantarflexor muscle-tendon mechanics and energetics during walking with elastic ankle exoskeletons 

  33. J. Hum. Kinet. Sinclair 39 25 2013 10.2478/hukin-2013-0065 Digital filtering of three-dimensional lower extremity kinematics: an assessment 

  34. J. Biomech. Eng. Whittington 131 2009 10.1115/1.3005147 A simple mass-spring model with roller feet can induce the ground reactions observed in human walking 

  35. J. Biomech. Yeom 44 59 2010 10.1016/j.jbiomech.2010.08.024 A gravitational impulse model predicts collision impulse and mechanical work during a step-to-step transition 

  36. J. Exp. Biol. Zelik 213 4257 2010 10.1242/jeb.044297 Human walking isn’t all hard work: evidence of soft tissue contributions to energy dissipation and return 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로