$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Prediction of composite microstructure stress-strain curves using convolutional neural networks 원문보기

Materials & Design, v.189, 2020년, pp.108509 -   

Yang, Charles (Department of Mechanical Engineering, University of California) ,  Kim, Youngsoo (Department of Mechanical Engineering & KI for the NanoCentury, Korea Advanced Institute of Science and Technology) ,  Ryu, Seunghwa (Department of Mechanical Engineering & KI for the NanoCentury, Korea Advanced Institute of Science and Technology) ,  Gu, Grace X. (Department of Mechanical Engineering, University of California)

Abstract AI-Helper 아이콘AI-Helper

Abstract Stress-strain curves are an important representation of a material's mechanical properties, from which important properties such as elastic modulus, strength, and toughness, are defined. However, generating stress-strain curves from numerical methods such as finite element method (FEM) is ...

Keyword

참고문헌 (37)

  1. Compos. Struct. Ghazlan 153 278 2016 10.1016/j.compstruct.2016.06.020 Three-dimensional Voronoi model of a nacre-mimetic composite structure under impulsive loading 

  2. Compos. Struct. Kim 189 27 2018 10.1016/j.compstruct.2018.01.038 An extended analytic model for the elastic properties of platelet-staggered composites and its application to 3D printed structures 

  3. Nat. Commun. Sakhavand 6 6523 2015 10.1038/ncomms7523 Universal composition-structure-property maps for natural and biomimetic platelet-matrix composites and stacked heterostructures 

  4. Compos. Part B Eng. Tran 108 210 2017 10.1016/j.compositesb.2016.09.083 Bimaterial 3D printing and numerical analysis of bio-inspired composite structures under in-plane and transverse loadings 

  5. J. Mech. Phys. Solids Zhang 83 285 2015 10.1016/j.jmps.2015.06.015 Biomimetic staggered composites with highly enhanced energy dissipation: modeling, 3D printing, and testing 

  6. Int. J. Smart Nano Mater. Zhang 00 1 2019 Developments in 4D-printing: a review on current smart materials, technologies, and applications 

  7. Adv. Mater. Compton 26 5930 2014 10.1002/adma.201401804 3D-printing of lightweight cellular composites 

  8. MRS Bull. Das 41 729 2016 10.1557/mrs.2016.217 Metallic materials for 3D printing 

  9. Scr. Mater. Jared 135 141 2017 10.1016/j.scriptamat.2017.02.029 Additive manufacturing: toward holistic design 

  10. Makiewicz 2012 ASM Proc. Int. Conf. Trends Weld. Res Microstructure evolution during laser additive manufacturing of Ti6Al4V alloys 

  11. Eur. J. Mech. A. Solids Lee 72 79 2018 10.1016/j.euromechsol.2018.02.008 Theoretical study of the effective modulus of a composite considering the orientation distribution of the fillers and the interfacial damage 

  12. Front. Mater. Ryu 6 21 2019 10.3389/fmats.2019.00021 Micromechanics-based homogenization of the effective physical properties of composites with an anisotropic matrix and interfacial imperfections 

  13. RSC Adv. Sun 2 7617 2012 10.1039/c2ra20218b Hierarchical structure and mechanical properties of nacre: a review 

  14. Comput. Mech. Ambati 55 383 2015 10.1007/s00466-014-1109-y A review on phase-field models of brittle fracture and a new fast hybrid formulation 

  15. Comput. Mater. Sci. Jeong 155 483 2018 10.1016/j.commatsci.2018.09.021 Phase field modeling of crack propagation under combined shear and tensile loading with hybrid formulation 

  16. Compos. Struct. Kim 220 769 2019 10.1016/j.compstruct.2019.04.017 A three-dimensional fracture pattern diagram of staggered platelet structures 

  17. Comput. Mater. Sci. Liu 121 35 2016 10.1016/j.commatsci.2016.04.009 Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model 

  18. Comput. Methods Appl. Mech. Eng. Miehe 199 2765 2010 10.1016/j.cma.2010.04.011 A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits 

  19. Int. J. Numer. Methods Eng. Miehe 83 1273 2010 10.1002/nme.2861 Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations 

  20. Finite Elem. Anal. Des. Molnar 130 27 2017 10.1016/j.finel.2017.03.002 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture 

  21. Eng. Fract. Mech. Nguyen 139 18 2015 10.1016/j.engfracmech.2015.03.045 A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure 

  22. Phys. Rev. Lett. Hanakata 121 2018 10.1103/PhysRevLett.121.255304 Accelerated search and design of stretchable graphene kirigami using machine learning 

  23. Appl. Phys. Lett. Teske 114 2019 10.1063/1.5088412 A machine learning approach for automated fine-tuning of semiconductor spin qubits 

  24. Appl. Phys. Lett. Woolley 98 2011 10.1063/1.3600662 Automated probe microscopy via evolutionary optimization at the atomic scale 

  25. Adv. Funct. Mater. Du 21 772 2011 10.1002/adfm.201001397 Structural origin of the strain-hardening of spider silk 

  26. Mater. Horizons Gu 5 939 2018 10.1039/C8MH00653A Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment 

  27. New J. Phys. Montavon 15 2013 10.1088/1367-2630/15/9/095003 Machine learning of molecular electronic properties in chemical compound space 

  28. Sci. Rep. Pilania 3 2810 2013 10.1038/srep02810 Accelerating materials property predictions using machine learning 

  29. MRS Commun. Chen 9 556 2019 10.1557/mrc.2019.32 Machine learning for composite materials 

  30. MRS Commun. Yang 9 609 2019 10.1557/mrc.2019.49 Using convolutional neural networks to predict composite properties beyond the elastic limit 

  31. J. Comput. Chem. Goh 38 1291 2017 10.1002/jcc.24764 Deep learning for computational chemistry 

  32. Nature Lecun 521 436 2015 10.1038/nature14539 Deep learning 

  33. Sci. Adv. Li 4 2018 10.1126/sciadv.aap8672 Machine learning-enabled identification of material phase transitions based on experimental data: exploring collective dynamics in ferroelectric relaxors 

  34. ACS Appl. Mater. Interfaces Neumayer 10 42674 2018 10.1021/acsami.8b15872 Decoupling mesoscale functional response in PLZT across the ferroelectric-relaxor phase transition with contact kelvin probe force microscopy and machine learning 

  35. J. Mach. Learn. Res. Pedregosa 12 2825 2011 Scikit-learn: machine learning in Python 

  36. Chollet 

  37. CoRR. Abs/1412 Kingma 6 2015 Adam: a method for stochastic optimization 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로