최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Expert systems with applications, v.149, 2020년, pp.113252 -
Kim, Taegong (Corresponding author.) , Park, Cheong Hee
Abstract Outlier detection aims to find a data sample that is different from most other data samples. While outlier detection is performed at an individual instance level, anomaly pattern detection on a data stream means detecting a time point where a pattern to generate data is unusual and signifi...
Aggarwal 2017 Outlier analysis
Ahmad, S., & Purdy, S. (2016). Real-time anomaly detection for streaming analytics. Retrieved from https://arxiv.org/pdf/1607.02480.pdf.
Journal of Machine Learning Research Bife 11 1601 2010 Moa: Massive online analysis
Das 2008 Proceedings of KDD Anomaly pattern detection in categorical datasets
Pattern Recognition Domingues 74 406 2018 10.1016/j.patcog.2017.09.037 A comparative evaluation of outlier detection algorithms: Experiments and analyses
Haque 2016 Proceedings of the AAAI Sand: Semi-supervised adaptive novel class detection and classification over data stream
Hawkins 1980 Identification of outliers
Hawkins 2002 Proceedings of the international conference on data warehousing and knowledge discovery Outlier detection using replicator neural networks
IEICE Transactions on Information and systems Kim E100-D(10) 2537 2017 10.1587/transinf.2017EDP7091 An efficient concept drift detection method for streaming data under limited labeling
Lindstrom 2011 Proceedings of the IEEE 11th int. conf. data mining workshops Drift detection using uncertainty distribution divergence
Liu 2008 Proceedings of the 8th international conference on data mining Isolation forest
Navidi 2006 Statistics for engineers and scientists
Padilla 2013 Proceedings of IEEE international conference on computational intelligence and cybernetics Performance of a hierarchical temporal memory network in noisy sequence learning
Journal of Supercomputing Park 75(9) 6118 2019 10.1007/s11227-018-2674-1 Outlier and anomaly pattern detection on data streams
KIPS Transactions Software and Data Engineering Park 7(11) 435 2018 Outlier detection by clustering-based ensemble model construction
Sethi 2015 Proceedings of the INNS conference on big data Don’t pay for validation: Detecting drifts from unlabeled data using margin density
Sheldon 2004 Introduction to probability and statistics for engineers and scientists
Spinosa 2007 Proceedings of the SAC Olindda: A cluster-based approach for detecting novelty and concept drift in data streams
Spinosa 2008 Proceedings of the SAC Cluster-based novel concept detection in data streams applied to intrusion detection in computer networks
Wong 2002 Proceedings of the 18th international conference on artificial intelligence Rule-based anomaly pattern detection for detecting disease outbreaks
Zliobaite 2010 Proceedings of the IEEE international conference on data mining workshops Change with delayed labeling: When is it detectable?
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.