$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Generation of carbon nanowhiskers, nanotips, and nanodots by controlling plasma environment: Ion energy and radical effects

Carbon, v.162, 2020년, pp.423 - 430  

Choi, Daehan (Korea Research Institute of Standards and Science) ,  Yeom, H.J. (Korea Research Institute of Standards and Science) ,  You, K.H. (Korea Research Institute of Standards and Science) ,  Kim, J.H. (Korea Research Institute of Standards and Science) ,  Seong, D.J. (Korea Research Institute of Standards and Science) ,  Yoon, Euijoon (Department of Materials Science and Engineering, Seoul National University) ,  Lee, Hyo-Chang (Korea Research Institute of Standards and Science)

Abstract AI-Helper 아이콘AI-Helper

Abstract Carbon nanotips and nanowhiskers were produced through etching of an amorphous carbon layer (ACL) by controlling the plasma environment. Discharge types and different gases induced significant changes in the carbon nanostructure owing to the independent or combined effect of ions and radic...

참고문헌 (85)

  1. Carbon Wang 50 3561 2012 10.1016/j.carbon.2012.03.028 The effect of temperature on the mechanism of photoluminescence from plasma-nucleated, nitrogenated carbon nanotips 

  2. Carbon Wang 44 1949 2006 10.1016/j.carbon.2006.02.004 Effects of carbon film roughness on growth of carbon nanotip arrays by plasma-enhanced hot filament chemical vapor deposition 

  3. Appl. Surf. Sci. Wang 258 1677 2011 10.1016/j.apsusc.2011.09.124 Carbon fractals grown from carbon nanotips by plasma-enhanced hot filament chemical vapor deposition 

  4. Appl. Surf. Sci. Wang 245 21 2005 10.1016/j.apsusc.2004.10.014 Study on the mechanism of self-organized carbon nanotips without catalyst by plasma-enhanced hot filament chemical vapor deposition 

  5. Appl. Phys. Lett. Jang 79 1682 2001 10.1063/1.1401777 Self-organized carbon nanotips 

  6. Nanotechnology Yeong 17 3655 2006 10.1088/0957-4484/17/15/006 The growth mechanism and field-emission properties of single carbon nanotips 

  7. J. Appl. Phys. Wang 105 2009 Tailoring carbon nanotips in the plasma-assisted chemical vapor deposition: effect of the process parameters 

  8. Carbon Li 129 374 2018 10.1016/j.carbon.2017.12.039 Highly efficient water desalination in carbon nanocones 

  9. Carbon Tsakadze 45 2022 2007 10.1016/j.carbon.2007.05.030 Plasma-assisted self-organized growth of uniform carbon nanocone arrays 

  10. Appl. Phys. Rev. Lee 5 2018 10.1063/1.5012001 Review of inductively coupled plasmas: nano-applications and bistable hysteresis physics 

  11. Phys. Plasmas Levchenko 15 103501 2008 10.1063/1.2988781 Growth of carbon nanocone arrays on a metal catalyst: the effect of carbon flux ionization 

  12. Appl. Phys. Lett. Levchenko 91 113115 2007 10.1063/1.2784932 Plasma-assisted self-sharpening of platelet-structures single-crystalline carbon nanocones 

  13. Science Zhang 300 472 2003 10.1126/science.1082264 Tubular graphite cones 

  14. J. Appl. Phys. Denysenko 95 2713 2004 10.1063/1.1642762 Inductively coupled Ar/CH4/H2 plasmas for low temperature deposition of ordered carbon nanostructures 

  15. J. Power Sources He 243 880 2013 10.1016/j.jpowsour.2013.06.104 Supercapacitors based on 3D network of activated carbon nanowhiskers wrapped-on graphitized electrospun nanofibers 

  16. ACS Sustain. Chem. Eng. Zhang 2 1525 2014 10.1021/sc500221s Nitrogen-doped hierarchical porous carbon nanowhisker ensembles on carbon nano fiber for high-performance supercapacitors 

  17. J. Vac. Sci. Technol. Floro 1398 1983 10.1116/1.572029 Ion-bombardment-induced whisker formation on graphite 

  18. Nat. Nanotechnol. Sharma 10 1027 2015 10.1038/nnano.2015.220 A carbon nanotube optical rectenna 

  19. Nat. Nanotechnol. Geier 10 944 2015 10.1038/nnano.2015.197 Solution-processed carbon nanotube thin-film complementary static random access memory 

  20. Chem. Soc. Rev. Kumar 46 158 2017 10.1039/C6CS00517A Carbon nanotubes : a novel material for multifaceted applications in human healthcare † 

  21. Adv. Funct. Mater. Cheng 25 7381 2015 10.1002/adfm.201502711 High-performance supercapacitor applications of NiO-Nanoparticle-Decorated millimeter-long vertically aligned carbon nanotube Arrays via an effective supercritical CO2-assisted method 

  22. Nano Lett. Gangloff 4 1575 2004 10.1021/nl049401t Self-aligned, gated arrays of individual nanotube and nanowire emitters 

  23. Carbon Yatom 125 336 2017 10.1016/j.carbon.2017.09.034 “ Synthesis-on ” and “ synthesis-off ” modes of carbon arc operation during synthesis of carbon nanotubes 

  24. Carbon Han 116 174 2017 10.1016/j.carbon.2017.02.003 Migration of a carbon adatom on a charged single-walled carbon nanotube 

  25. Carbon Keidar 44 1022 2006 10.1016/j.carbon.2005.10.008 Current-driven ignition of single-wall carbon nanotubes 

  26. Carbon Sun 45 732 2007 10.1016/j.carbon.2006.11.033 Controlled synthesis of pointed carbon nanotubes 

  27. Carbon Okita 45 1518 2007 10.1016/j.carbon.2007.03.022 Effects of hydrogen on carbon nanotube formation in CH4/H2 plasmas 

  28. Carbon Burian 43 2723 2005 10.1016/j.carbon.2005.05.032 Structural studies of oriented carbon nanotubes in alumina channels using high energy Xray diffraction 

  29. Plasma Sources Sci. Technol. Vekselman 26 2017 10.1088/1361-6595/aa7158 Complex structure of the carbon arc discharge for synthesis of nanotubes 

  30. Chem. Commun. Liu 6813 2009 10.1039/b916918k Direct synthesis of mesoporous carbon nanowires in nanotubes using MnO2 nanotubes as a template and their application in supercapacitors 

  31. Carbon Mannsberger 42 953 2004 10.1016/j.carbon.2003.12.049 Scanning probe microscopy and spectroscopy of carbon nanorods grown by self assembly 

  32. Nanoscale Res. Lett. Sankaran 7 522 2012 10.1186/1556-276X-7-522 Microplasma illumination enhancement of vertically aligned conducting ultrananocrystalline diamond nanorods 

  33. Nat. Commun. Yuan 9 2249 2018 10.1038/s41467-018-04635-5 Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs 

  34. Adv. Sci. Shao 4 1700395 2017 10.1002/advs.201700395 Full-color emission polymer carbon dots with quench-resistant solid-state fluorescence 

  35. ACS Nano Hola 11 12402 2017 10.1021/acsnano.7b06399 Graphitic nitrogen triggers red fluorescence in carbon dots 

  36. Carbon Shamsipur 124 429 2017 10.1016/j.carbon.2017.08.072 Long-wavelength, multicolor, and white-light emitting carbon-based dots: achievements made, challenges remaining, and applications 

  37. Plasma Sources Sci. Technol. Stratton 27 2018 10.1088/1361-6595/aad3fa In situ diagnostics for nanomaterial synthesis in carbon arc plasma 

  38. MRS Commun. Yatom 8 842 2018 10.1557/mrc.2018.91 Synthesis of nanoparticles in carbon arc : measurements and modeling 

  39. Green Chem. Li 16 2566 2014 10.1039/C3GC42562B Fast, energy-efficient synthesis of luminescent carbon quantum dots 

  40. Green Chem. Liu 19 3611 2017 10.1039/C7GC01236E Large-scale simultaneous synthesis of highly photoluminescent green amorphous carbon nanodots and yellow crystalline graphene quantum dots at room temperature 

  41. Nanoscale Shi 7 7394 2015 10.1039/C5NR00783F Facile and eco-friendly synthesis of green fluorescent carbon nanodots for applications in bioimaging, patterning and staining 

  42. Compos. Appl. Sci. Manuf. Shirvanimoghaddam 92 70 2017 10.1016/j.compositesa.2016.10.032 Carbon fiber reinforced metal matrix composites: fabrication processes and properties 

  43. Carbon Sui 40 1011 2002 10.1016/S0008-6223(01)00230-5 Growth of carbon nanotubes and nanofibres in porous anodic alumina film 

  44. Carbon Merino 43 551 2005 10.1016/j.carbon.2004.10.018 Carbon nanofibres and activated carbon nanofibres as electrodes in supercapacitors 

  45. Nanotechnology Ominami 19 405302 2008 10.1088/0957-4484/19/40/405302 Growth of carbon nanofibers on nanoscale catalyst strips fabricated with a focused ion beams 

  46. J. Appl. Phys. Denysenko 104 2008 10.1063/1.2986915 Carbon nanofiber growth in plasma-enhanced chemical vapor deposition 

  47. J. Appl. Phys. Wang 106 2009 Analysis of photoluminescence background of Raman spectra of carbon nanotips grown by plasma-enhanced chemical vapor deposition 

  48. Nanoscale Res. Lett. Sola 4 431 2009 10.1007/s11671-009-9270-5 Field emission and radial distribution function studies of fractal-like amorphous carbon nanotips 

  49. Nanotechnology Chen 17 4322 2006 10.1088/0957-4484/17/17/007 Fabrication of high-aspect-ratio carbon nanocone probes by electron beam induced deposition patterning 

  50. Appl. Phys. A Xu 103 59 2011 10.1007/s00339-011-6341-0 Growth and field emission properties of nanotip arrays of amorphous carbon with embedded hexagonal diamond nanoparticles 

  51. Appl. Phys. Lett. Tsai 81 721 2002 10.1063/1.1494839 Bias effect on the growth of carbon nanotips using microwave plasma chemical vapor deposition 

  52. J. Appl. Phys. Huang 94 6796 2003 10.1063/1.1620681 Field emission from amorphous-carbon nanotips on copper 

  53. J. Appl. Phys. Wang 110 2011 Room-temperature photoluminescence from nitrogenated carbon nanotips grown by plasma-enhanced hot filament chemical vapor deposition 

  54. Phys. Rev. B Robertson 53 16302 1996 10.1103/PhysRevB.53.16302 Recombination and photoluminescence mechanism in hydrogenated amorphous carbon 

  55. Diam. Relat. Mater. Wang 16 2007 10.1016/j.diamond.2007.09.004 Study on formation model of carbon nanotips by ion bombardment 

  56. Diam. Relat. Mater. Tsakadze 13 1923 2004 10.1016/j.diamond.2004.06.010 Self-assembly of uniform carbon nanotip structures in chemically active inductively coupled plasmas 

  57. Surf. Coating. Technol. Tsakadze 191 49 2005 10.1016/j.surfcoat.2004.02.020 Low-temperature assembly of ordered carbon nanotip arrays in low-frequency, high-density inductively coupled plasmas 

  58. J. Phys. Chem. B Jin 110 5423 2006 10.1021/jp057240r In situ fabrication and graphitization of amorphous carbon nanowires and their electrical properties 

  59. Appl. Phys. Lett. Thong 81 4823 2002 10.1063/1.1529084 Field-emission induced growth of nanowires 

  60. Lieberman vol. 1 2005 

  61. J. Appl. Phys. Hansen 112 2012 10.1063/1.4730924 Synergistic etch rates during low-energetic plasma etching of hydrogenated amorphous carbon 

  62. Appl. Phys. Lett. Kim 83 4725 2003 10.1063/1.1632026 Plasma frequency measurements for absolute plasma density by means of wave cutoff method 

  63. Rev. Sci. Instrum. Kim 75 2706 2004 10.1063/1.1771487 Wave cutoff method to measure absolute electron density in cold plasma 

  64. Metrologia Kim 42 110 2005 10.1088/0026-1394/42/2/005 Analysis of the uncertainty in the measurement of electron densities in plasmas using the wave cutoff method 

  65. Diam. Relat. Mater. Vivensang 3 645 1994 10.1016/0925-9635(94)90241-0 Reactive ion etching of diamond and diamond-like carbon films 

  66. APEX Pandey 6 2013 Opto-curling probe for simultaneous monitoring of optical emission and electron density in reactive plasmas 

  67. Diam. Relat. Mater. Tay 12 2072 2003 10.1016/S0925-9635(03)00192-4 Study of surface energy of tetrahedral amorphous carbon films modified in various gas plasma 

  68. Plasma Sources Sci. Technol. Laporta 25 2016 10.1088/0963-0252/25/1/01LT04 Carbon monoxide dissociative attachment and resonant dissociation by 

  69. Plasma Sources Sci. Technol. Kozak 23 2014 10.1088/0963-0252/23/4/045004 Splitting of CO2 by vibrational excitation in non-equilibrium plasmas: a reaction kinetics model 

  70. Energy Environ. Sci. Snoeckx 9 999 2016 10.1039/C5EE03304G CO2 conversion in a dielectric barrier discharge plasma: N2 in the mix as a helping hand or problematic impurity 

  71. Phys. Rep. Mcconkey 466 1 2008 10.1016/j.physrep.2008.05.001 Electron impact dissociation of oxygen-containing molecules-A critical review 

  72. Appl. Phys. Lett. Bower 77 830 2000 10.1063/1.1306658 Plasma-induced alignment of carbon nanotubes 

  73. Nanotechnology Levchenko 21 2010 10.1088/0957-4484/21/2/025605 Silicon on silicon: self-organized nanotip arrays formed in reactive Ar + H2 plasmas 

  74. Phys. Plasmas Chung 19 113502 2012 10.1063/1.4765357 Optical emission diagnostics with electric probe measurements of inductively coupled Ar/O2/Ar-O2 plasmas 

  75. J. Phys. D Appl. Phys. Rezaei 47 2014 10.1088/0022-3727/47/8/085401 Investigation of antibacterial and wettability behaviours of plasma-modified PMMA films for application in ophthalmology 

  76. J. Non-Cryst. Solids Abbasi-Firouzjah 368 86 2013 10.1016/j.jnoncrysol.2013.03.008 The effect of TEOS plasma parameters on the silicon dioxide deposition mechanisms 

  77. Lock 16 2011 Experimental and Theoretical Estimation of Excited Species Generation in Pulsed Electron Beam-Generated Plasmas Produced in Pure Argon, Nitrogen, Oxygen, and Their Mixtures 

  78. Phys. Rev. B Ferrari 61 14095 2000 10.1103/PhysRevB.61.14095 Interpretation of Raman spectra of amorphous and disordered carbons 

  79. Appl. Phys. Lett. Yu 78 2226 2001 10.1063/1.1361286 Electron field emission from carbon nanoparticles prepared by microwave-plasma chemical-vapor deposition 

  80. Fusion Sci. Technol. Kirschner 53 218 2008 10.13182/FST08-A1712 Erosion and deposition mechanisms in fusion plasmas 

  81. Nucl. Fusion Hopf 42 L27 2002 10.1088/0029-5515/42/12/101 Chemical sputtering of hydrocarbon films by low-energy Ar+ ion and H atom impact 

  82. Polym. Degrad. Stabil. Kondyurin 94 638 2009 10.1016/j.polymdegradstab.2009.01.004 Mechanisms for surface energy changes observed in plasma immersion ion implanted polyethylene: the roles of free radicals and oxygen-containing groups 

  83. Appl. Phys. Lett. Lee 96 2010 Effects of rf-bias power on plasma parameters in a low gas pressure inductively coupled plasma 

  84. Appl. Phys. Lett. Lee 101 244104 2012 10.1063/1.4770312 Collisionless electron heating by radio frequency bias in low gas pressure inductive discharge 

  85. J. Appl. Phys. Oyarzabal 104 2008 10.1063/1.2968549 Carbon atom and cluster sputtering under low-energy noble gas plasma bombardment 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로