최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기SIAM journal on applied dynamical systems, v.19 no.2, 2020년, pp.1080 - 1123
Kim, Dohyun
We study the emergent behavior of the matrix ensemble on the unitary group in which a state of each oscillator is influenced by the relative distances. Thus, the coupling strength becomes a time-dependent function and its temporal evolution is determined by a feedback rule incorporating the linear d...
1. V. Avalos-Gaytán, J. A. Almendral, I. Leyva, F. Battiston, V. Nicosia, V. Latora, and S. Boccaletti, Emergent explosive synchronization in adaptive complex networks , Phys. Rev. E (3), 97 (2018), 042301.
2. I. Barbǎlat, Syst$\grave{e}$mes d'$\acute{e}$quations diff$\acute{e}$rentielles oscillations non Lin$\acute{e}$aires , Rev. Math. Pures Appl., 4 (1959), pp. 267--270.
3. N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives , SIAM Rev., 53 (2011), pp. 409--463.
4. N. Bellomo and L. Gibelli, Behavioral crowds: Modeling and Monte Carlo simulations toward validation , Comput. & Fluids, 141 (2016), pp. 13--21.
5. R. Berner, J. Fialkowski, D. Kasatkin, V. Nekorkin, S. Yanchuk, and E. Schöll, Hierarchical frequency clusters in adaptive networks of phase oscillators , Chaos, 29 (2019), 103134.
6. J. Bronski, T. Carty, and S. Simpson, A matrix valued Kuramoto model , J. Stat. Phys., 178 (2020), pp. 595--624.
7. J. C. Bronski, Y. He, X. Li, Y. Liu, D. R. Sponseller, and S. Wolbert, The stability of fixed points for a Kuramoto model with Hebbian interactions, Chaos, 27 (2017), 053110.
8. J. Buck and E. Buck, Biology of synchronous flashing of fireflies , Nature, 211 (1966), pp. 562--564.
9. D. Cumin and C. P. Unsworth, Generalizing the Kuramoto model for the study of neuronal synchronization in the brain , Phys. D, 226 (2007), pp. 181--196.
10. T. Danino, O. Mondragon-Palomino, L. Tsimring, and J. Hasty, A synchronized quorum of genetic clocks , Nature, 463 (2010), pp. 326--330.
11. L. DeVille, Synchronization and stability for quantum Kuramoto , J. Stat. Phys., 174 (2019), pp. 160--187.
12. G. B. Ermentrout, An adaptive model for synchrony in the firefly Pteroptyx Malaccae, J. Math. Biol., 29 (1991), pp. 571--585.
13. R. C. Fetecau and W. Sun, First-order aggregation models and zero inertia limits , J. Differential Equations, 259 (2015), pp. 6774--6802.
14. F. Golse and S.-Y. Ha, A mean-field limit of the Lohe matrix model and emergent dynamics , Arch. Ration. Mech. Anal., 234 (2019), pp. 1445--1491.
15. I. Goychuk, J. Casado-Pascual, M. Morillo, J. Lehmann, and P. Hänggi, Quantum stochastic synchronization , Phys. Rev. Lett., 97 (2006), 210601.
16. G. L. Giorgi, F. Galve, G. Manzano, P. Colet, and R. Zambrini, Quantum correlations and mutual synchronization , Phys. Rev. A (3), 85 (2012), 052101.
17. T. Gregor, K. Fujimoto, N. Masaki, and S. Sawai, The onset of collective behavior in social amoebae , Science, 328 (2010), pp. 1021--1025.
18. S.-Y. Ha and D. Kim, Emergent behavior of a second-order Lohe matrix model on the unitary group , J. Stat. Phys., 175 (2019), pp. 904--931.
19. S.-Y. Ha, D. Kim, D. Kim, H. Park, and W. Shim, Emergent dynamics of the Lohe matrix ensemble on a network under time-delayed interactions , J. Math. Phys., 61 (2020), 012702.
20. S.-Y. Ha, D. Kim, J. Lee, and S. E. Noh, Emergence of aggregation in the swarm sphere model with adaptive coupling law , Kinet. Relat. Models, 12 (2019), pp. 411--444.
21. S.-Y. Ha, D. Ko, and S. W. Ryoo, Emergent dynamics of a generalized Lohe model on some class of Lie groups , J. Stat. Phys., 168 (2017), pp. 171--207.
22. S.-Y. Ha, D. Ko, and S. W. Ryoo, On the relaxation dynamics of Lohe oscillators on some Riemannian manifolds , J. Stat. Phys., 172 (2018), pp. 1427--1478.
23. S.-Y.Ha, J. Lee, Z. Li, and J. Park, Emergent dynamics of Kuramoto oscillators with adaptive couplings: Conservation law and fast learning , SIAM J. Appl. Dyn. Syst., 17 (2018), pp. 1560--1588.
24. S.-Y. Ha and S. W. Ryoo, On the emergence and orbital stability of phase-locked states for the Lohe model , J. Stat. Phys., 163 (2016), pp. 411--439.
25. D. O. Hebb, The Organization of Behavior , Wiley, New York, 1949.
26. H. Huh and S.-Y. Ha, Dynamical system approach to synchronization of the coupled Schrödinger-Lohe system , Quart. Appl. Math., 75 (2017), pp. 555--579.
27. H. Huh and D. Kim, Asymptotic Behavior of Gradient Flows on the Unit Sphere with Various Potentials , manuscript.
28. S. M. Hung and S. N. Givigi, A q-learning approach to flocking with UAVs in a stochastic environment , IEEE Trans. Cybern., 47 (2017), pp. 186--197.
29. H. J. Kimble, The quantum internet , Nature, 453 (2008), pp. 1023--1030.
30. A. Klar and R. Wegener, Enskog-like kinetic models for vehicular traffic , J. Stat. Phys., 87 (1997), pp. 91--114.
31. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence , Springer, Berlin, 1984.
32. Y. Kuramoto, Self-Entrainment of a Population of Coupled Non-linear Oscillators , in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Phys. 39, Springer, Berlin, 1975, pp. 420--422.
33. M. A. Lohe, Non-abelian Kuramoto model and synchronization , J. Phys. A, 42 (2009), 395101.
34. M. A. Lohe, Quantum synchronization over quantum networks , J. Phys. A, 43 (2010), 465301.
35. T. E. Lee and H. R. Sadeghpour, Quantum synchronization of quantum Van der Pol oscillators with trapped ions , Phys. Rev. Lett., 111 (2013), 234101.
36. M. Machida, T. Kano, S. Yamada, M. Okumura, T. Imamura, and T. Koyama, Quantum synchronization effects in intrinsic Josephson junctions , Phys. C, 468 (2008), pp. 689--694.
37. A. Mari, A. Farace, N. Didier, V. Giovannetti, and R. Fazio, Measures of quantum synchronization in continuous variable systems , Phys. Rev. Lett., 111 (2013), 103605.
38. P. Nelson, A kinetic model of vehicular traffic and its associated bimodal equilibrium solution , Transp. Theory Statist. Phys., 24 (1995), pp. 383--409.
39. R. K. Niyogi and L. Q. English, Learning-rate-dependent clustering and self-development in a network of coupled phase oscillators , Phys. Rev. E (3), 80 (2009), 066213.
40. L. Papadopoulos, J. Z. Kim, J. Kurths, and D. Bassett, Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators , Chaos, 27 (2017), 073115.
41. L. Perea, P. Elosegui, and G. Gomez, Extension of the Cucker-Smale control law to space flight formations , J. Guid. Control, 32 (2009), pp. 527--537.
42. C. B. Picallo and H. Riecke, Adaptive oscillator networks with conserved overall coupling: Sequential firing and near-synchronized states , Phys. Rev. E (3), 83 (2011), 036206.
43. Q. Ren and J. Zhao, Adaptive coupling and enhanced synchronization in coupled phase oscillators , Phys. Rev. E (3), 76 (2007), 016207.
44. M. Rubenstein, A. Cornejo, and R. Nagapal, Programmable self-assembly in a thousand-robot swarm , Science, 345 (2014), pp. 795--799.
45. P. Seliger, S. C. Young, and L. S. Tsimring, Plasticity and learning in a network of coupled phase oscillators , Phys. Rev. E (3), 65 (2002), 041906.
46. G. Shi, D. Dong, I. R. Petersen, and K. H. Johansson, Reaching a quantum consensus: Master equations that generate symmetrization and synchronization , IEEE Trans. Automat. Control, 61 (2016), pp. 374--387.
47. A. N. Tikhonov, On systems of differential equations containing parameters , Mat. Sb. (N.S.), 27 (1950), pp. 147--156 (in Russian).
48. L. Timms and L. Q. English, Synchronization in phase-coupled Kuramoto oscillator networks with axonal delay and synaptic plasticity , Phys. Rev. E (3), 89 (2014), 032906.
49. V. M. Vinokur, T. I. Baturina, M. V. Fistul, A. Y. Mironov, M. R. Baklanov, and C. Strunk, Superinsulator and quantum synchronization , Nature, 452 (2008), pp. 613--616.
50. S. Walter, A. Nunnenkamp, and C. Bruder, Quantum synchronization of two Van der Pol oscillators , Ann. Phys., 527 (2015), pp. 131--138.
51. O. V. Zhirov and D. L. Shepelyansky, Quantum synchronization , Eur. Phys. J. D, 38 (2006), pp. 375--379.
52. O. V. Zhirov and D. L. Shepelyansky, Quantum synchronization and entanglement of two qubits coupled to a driven dissipative resonator, Phys. Rev. B (3), 80 (2009), 014519.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.