최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기SIAM journal on applied dynamical systems, v.19 no.2, 2020년, pp.1225 - 1270
Ha, Seung-Yeal , Kim, Dohyun , Lee, Jaeseung , Noh, SeEun
We study emergent behaviors of the swarm sphere model under attractive-repulsive couplings and present several sufficient frameworks leading to the complete and practical bicluster aggregations using two key ingredients (two-point correlation function and order parameter). From the modeling perspect...
1. J. A. Acebron, L. L. Bonilla, C. J. P. Pérez Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena , Rev. Modern Phys., 77 (2005), pp. 137--185.
2. I. Barbǎlat, Systèmes d'équations différentielles d'oscillations non linéaires , Rev. Math. Pures Appl., 4 (1959), pp. 267--270.
3. A. R. Bausch, M. J. Bowick, A. Cacciuto, A. D. Dinsmore, M. F. Hsu, D. R. Nelson, M. G. Nikolaides, A. Travesset, and D. A. Weitz, Grain boundary scars and spherical crystallography , Science, 299 (2003), pp. 1716--1718.
4. S. Bowong and J. Tewa, Practical adaptive synchronization of a class of uncertain chaotic systems , Nonlinear Dynam., 56 (2009), pp. 57--68.
5. O. Burylko, Y. Kazanovich, and R. Borisyuk, Bifurcation study of phase oscillator systems with attractive and repulsive interaction , Phys. Rev. E (3), 90 (2014), 022911.
6. R. E. Caflisch, C. Lim, J. H. C. Luke, and A. S. Sangani, Periodic solutions for three sedimenting spheres , Phys. Fluids, 31 (1988), pp. 3175--3179.
7. J. A. Carrillo, Y.-P. Choi, and S. P. Perez, A review on attractive-repulsive hydrodynamics for consensus in collective behavior , in Active Particles, Vol. 1, Model. Simul. Sci. Eng. Technol., N. Bellomo, P. Degond, and E. Tadmor, eds., Birkhäuser/Springer, Cham, 2017.
8. D. Chi, S.-H. Choi, and S.-Y. Ha, Emergent behaviors of a holonomic particle system on a sphere , J. Math. Phys., 55 (2014), 052703.
9. S.-H. Choi and S.-Y. Ha, Complete entrainment of Lohe oscillators under attractive and repulsive couplings , SIAM J. Appl. Dyn. Syst., 13 (2014), pp. 1417--1441, https://doi.org/10.1137/140961699 .
10. J. Cho, S.-Y. Ha, F. Huang, C. Jin, and D. Ko, Emergence of bi-cluster flocking for the Cucker-Smale model , Math. Models Methods Appl. Sci., 26 (2016), pp. 1191--1218.
11. F. Cucker and S. Smale, Emergent behavior in flocks , IEEE Trans. Automat. Control, 52 (2007), pp. 852--862.
12. H. Daido, Population dynamics of randomly interacting self-oscillators , Progr. Theoret. Phys., 77 (1987), pp. 622--634.
13. H. Daido, Susceptibility of large populations of coupled oscillators , Phys. Rev. E (3), 91 (2015), 012925.
14. M. Doi, Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases , J. Polym. Sci., 19 (1981), pp. 229--243.
15. F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey , Automatica, 50 (2014), pp. 1539--1564.
16. D. Fang, S.-Y. Ha, and S. Jin, Emergent behaviors of the Cucker-Smale ensemble under attractive-repulsive couplings and Rayleigh frictions , Math. Models Methods Appl. Sci., 29 (2019), pp. 1349--1385.
17. R. Femat and G. Solis-Perales, On the chaos synchronization phenomena , Phys. Lett. A, 262 (1999), pp. 50--60.
18. M. Golubitsky, M. Krupa, and C. Lim, Time-reversibility and particle sedimentation , SIAM J. Appl. Math., 51 (1991), pp. 49--72, https://doi.org/10.1137/0151005 .
19. S.-Y. Ha, D. Kim, J. Lee, and S. E. No, Particle and kinetic models for swarming particles on a sphere and their stability properties , J. Stat. Phys., 174 (2019), pp. 622--655.
20. S.-Y. Ha, D. Kim, J. Lee, and S. E. No, Emergent dynamics of a mixed Kuramoto ensemble in attractive and repulsive couplings , submitted.
21. S.-Y. Ha, D. Ko, J. Park, and X. Zhang, Collective synchronization of classical and quantum oscillators , EMS Surv. Math. Sci., 3 (2016), pp. 209--267.
22. S.-Y. Ha, D. Ko, and S. W. Ryoo, On the relaxation dynamics of Lohe oscillators on some Riemannian manifolds , J. Stat. Phys., 172 (2018), pp. 1427--1478.
23. S.-Y. Ha, D. Ko, X. Zhang, and Y. Zhang, Emergent dynamics in the interactions of Cucker-Smale ensembles , Kinet. Relat. Models, 10 (2017), pp. 689--723.
24. S.-Y. Ha, D. Ko, X. Zhang, and Y. Zhang, Time-asymptotic interactions of two ensembles of Cucker-Smale flocking particles , J. Math. Phys., 58 (2017), 071509.
25. L. M. Hocking, The behaviour of clusters of spheres falling in a viscous fluid: Part 2. Slow motion theory , J. Fluid Mech., 20 (1964), pp. 129--139.
26. H. Hong and S. H. Strogatz, Conformists and contrarians in a Kuramoto model with identical natural frequencies , Phys. Rev. E (3), 84 (2011), 046202.
27. H. Hong and S. H. Strogatz, Kuramoto model of coupled oscillators with positive and negative coupling parameters: An example of conformist and contrarian oscillators , Phys. Rev. Lett., 106 (2011), 054102.
28. Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators , in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Phys. 39, Springer, Berlin, Heidelberg, 1975, pp. 420--422.
29. M. A. Lohe, Non-Abelian Kuramoto model and synchronization , J. Phys. A, 42 (2009), 395101.
30. M. Ma, J. Zhou, and J. Cai, Practical synchronization of second-order nonautonomous systems with parameter mismatch and its applications , Nonlinear Dynam., 69 (2012), pp. 1285--1292.
31. Y. Maistrenko, B. Penkovsky, and M. Rosenblum, Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions , Phys. Rev. E (3), 89 (2014), 060901.
32. J. Markdahl, J. Thunberg, and J. Goncales, Almost global consensus on the n-sphere , IEEE Trans. Automat. Control, 63 (2018), pp. 1664--1675.
33. R. Olfati-Saber, Swarms on sphere: A programmable swarm with synchronous behaviors like oscillator networks , in Proceedings of the 45th Annual IEEE Conference on Decision and Control, 2006, pp. 5060--5066.
34. A. Pikovsky and M. Rosenblum, Partially integrable dynamics of hierarchical populations of coupled oscillators , Phys. Rev. Lett., 101 (2008), 264103.
35. A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences , Cambridge University Press, Cambridge, UK, 2001.
36. L. Ritsma, S. Ellenbrek, A. Zomer, H. J. Snippert, F. de Sauvage, B. D. Simons, H. Clevers, and J. van Rheenen, Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging , Nature, 507 (2014), pp. 362--365.
37. T. Sanchez, D. T. Chen, S. J. DeCamp, M. Heymann, and Z. Dogic, Spontaneous motion in hierarchically assembled active matter , Nature, 491 (2012), pp. 431--434.
38. E. Teichmann and M. Rosenblum, Solitary states and partial synchrony in oscillatory ensembles with attractive and repulsive interactions , Chaos, 29 (2019), 093124.
39. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, Novel type of phase transition in a system of self-driven particles , Phys. Rev. Lett., 75 (1995), pp. 1226--1229.
40. A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators , J. Theoret. Biol., 16 (1967), pp. 15--42.
41. D. H. Zanette, Synchronization and frustration in oscillator networks with attractive and repulsive interactions , Europhys. Lett., 72 (2005), pp. 190--196.
42. J. Zhang, J. Zhu, and C. Qian, On equilibria and consensus of the Lohe model with identical oscillators , SIAM J. Appl. Dyn. Syst., 17 (2018), pp. 1716--1741, https://doi.org/10.1137/17M112765X .
43. J. Zhu, Synchronization of Kuramoto model in a high-dimensional linear space , Phys. Lett. A, 377 (2013), pp. 2939--2943.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.