$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Emergence of Bicluster Aggregation for the Swarm Sphere Model with Attractive-Repulsive Couplings

SIAM journal on applied dynamical systems, v.19 no.2, 2020년, pp.1225 - 1270  

Ha, Seung-Yeal ,  Kim, Dohyun ,  Lee, Jaeseung ,  Noh, SeEun

Abstract AI-Helper 아이콘AI-Helper

We study emergent behaviors of the swarm sphere model under attractive-repulsive couplings and present several sufficient frameworks leading to the complete and practical bicluster aggregations using two key ingredients (two-point correlation function and order parameter). From the modeling perspect...

Keyword

참고문헌 (43)

  1. 1.  J. A. Acebron, L. L. Bonilla, C. J. P. Pérez Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena , Rev. Modern Phys., 77 (2005), pp. 137--185. 

  2. 2.  I. Barbǎlat, Systèmes d'équations différentielles d'oscillations non linéaires , Rev. Math. Pures Appl., 4 (1959), pp. 267--270. 

  3. 3.  A. R. Bausch, M. J. Bowick, A. Cacciuto, A. D. Dinsmore, M. F. Hsu, D. R. Nelson, M. G. Nikolaides, A. Travesset, and D. A. Weitz, Grain boundary scars and spherical crystallography , Science, 299 (2003), pp. 1716--1718. 

  4. 4.  S. Bowong and J. Tewa, Practical adaptive synchronization of a class of uncertain chaotic systems , Nonlinear Dynam., 56 (2009), pp. 57--68. 

  5. 5.  O. Burylko, Y. Kazanovich, and R. Borisyuk, Bifurcation study of phase oscillator systems with attractive and repulsive interaction , Phys. Rev. E (3), 90 (2014), 022911. 

  6. 6.  R. E. Caflisch, C. Lim, J. H. C. Luke, and A. S. Sangani, Periodic solutions for three sedimenting spheres , Phys. Fluids, 31 (1988), pp. 3175--3179. 

  7. 7.  J. A. Carrillo, Y.-P. Choi, and S. P. Perez, A review on attractive-repulsive hydrodynamics for consensus in collective behavior , in Active Particles, Vol. 1, Model. Simul. Sci. Eng. Technol., N. Bellomo, P. Degond, and E. Tadmor, eds., Birkhäuser/Springer, Cham, 2017. 

  8. 8.  D. Chi, S.-H. Choi, and S.-Y. Ha, Emergent behaviors of a holonomic particle system on a sphere , J. Math. Phys., 55 (2014), 052703. 

  9. 9.  S.-H. Choi and S.-Y. Ha, Complete entrainment of Lohe oscillators under attractive and repulsive couplings , SIAM J. Appl. Dyn. Syst., 13 (2014), pp. 1417--1441, https://doi.org/10.1137/140961699 . 

  10. 10.  J. Cho, S.-Y. Ha, F. Huang, C. Jin, and D. Ko, Emergence of bi-cluster flocking for the Cucker-Smale model , Math. Models Methods Appl. Sci., 26 (2016), pp. 1191--1218. 

  11. 11.  F. Cucker and S. Smale, Emergent behavior in flocks , IEEE Trans. Automat. Control, 52 (2007), pp. 852--862. 

  12. 12.  H. Daido, Population dynamics of randomly interacting self-oscillators , Progr. Theoret. Phys., 77 (1987), pp. 622--634. 

  13. 13.  H. Daido, Susceptibility of large populations of coupled oscillators , Phys. Rev. E (3), 91 (2015), 012925. 

  14. 14.  M. Doi, Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases , J. Polym. Sci., 19 (1981), pp. 229--243. 

  15. 15.  F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey , Automatica, 50 (2014), pp. 1539--1564. 

  16. 16.  D. Fang, S.-Y. Ha, and S. Jin, Emergent behaviors of the Cucker-Smale ensemble under attractive-repulsive couplings and Rayleigh frictions , Math. Models Methods Appl. Sci., 29 (2019), pp. 1349--1385. 

  17. 17.  R. Femat and G. Solis-Perales, On the chaos synchronization phenomena , Phys. Lett. A, 262 (1999), pp. 50--60. 

  18. 18.  M. Golubitsky, M. Krupa, and C. Lim, Time-reversibility and particle sedimentation , SIAM J. Appl. Math., 51 (1991), pp. 49--72, https://doi.org/10.1137/0151005 . 

  19. 19.  S.-Y. Ha, D. Kim, J. Lee, and S. E. No, Particle and kinetic models for swarming particles on a sphere and their stability properties , J. Stat. Phys., 174 (2019), pp. 622--655. 

  20. 20.  S.-Y. Ha, D. Kim, J. Lee, and S. E. No, Emergent dynamics of a mixed Kuramoto ensemble in attractive and repulsive couplings , submitted. 

  21. 21.  S.-Y. Ha, D. Ko, J. Park, and X. Zhang, Collective synchronization of classical and quantum oscillators , EMS Surv. Math. Sci., 3 (2016), pp. 209--267. 

  22. 22.  S.-Y. Ha, D. Ko, and S. W. Ryoo, On the relaxation dynamics of Lohe oscillators on some Riemannian manifolds , J. Stat. Phys., 172 (2018), pp. 1427--1478. 

  23. 23.  S.-Y. Ha, D. Ko, X. Zhang, and Y. Zhang, Emergent dynamics in the interactions of Cucker-Smale ensembles , Kinet. Relat. Models, 10 (2017), pp. 689--723. 

  24. 24.  S.-Y. Ha, D. Ko, X. Zhang, and Y. Zhang, Time-asymptotic interactions of two ensembles of Cucker-Smale flocking particles , J. Math. Phys., 58 (2017), 071509. 

  25. 25.  L. M. Hocking, The behaviour of clusters of spheres falling in a viscous fluid: Part 2. Slow motion theory , J. Fluid Mech., 20 (1964), pp. 129--139. 

  26. 26.  H. Hong and S. H. Strogatz, Conformists and contrarians in a Kuramoto model with identical natural frequencies , Phys. Rev. E (3), 84 (2011), 046202. 

  27. 27.  H. Hong and S. H. Strogatz, Kuramoto model of coupled oscillators with positive and negative coupling parameters: An example of conformist and contrarian oscillators , Phys. Rev. Lett., 106 (2011), 054102. 

  28. 28.  Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators , in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Phys. 39, Springer, Berlin, Heidelberg, 1975, pp. 420--422. 

  29. 29.  M. A. Lohe, Non-Abelian Kuramoto model and synchronization , J. Phys. A, 42 (2009), 395101. 

  30. 30.  M. Ma, J. Zhou, and J. Cai, Practical synchronization of second-order nonautonomous systems with parameter mismatch and its applications , Nonlinear Dynam., 69 (2012), pp. 1285--1292. 

  31. 31.  Y. Maistrenko, B. Penkovsky, and M. Rosenblum, Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions , Phys. Rev. E (3), 89 (2014), 060901. 

  32. 32.  J. Markdahl, J. Thunberg, and J. Goncales, Almost global consensus on the n-sphere , IEEE Trans. Automat. Control, 63 (2018), pp. 1664--1675. 

  33. 33.  R. Olfati-Saber, Swarms on sphere: A programmable swarm with synchronous behaviors like oscillator networks , in Proceedings of the 45th Annual IEEE Conference on Decision and Control, 2006, pp. 5060--5066. 

  34. 34.  A. Pikovsky and M. Rosenblum, Partially integrable dynamics of hierarchical populations of coupled oscillators , Phys. Rev. Lett., 101 (2008), 264103. 

  35. 35.  A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences , Cambridge University Press, Cambridge, UK, 2001. 

  36. 36.  L. Ritsma, S. Ellenbrek, A. Zomer, H. J. Snippert, F. de Sauvage, B. D. Simons, H. Clevers, and J. van Rheenen, Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging , Nature, 507 (2014), pp. 362--365. 

  37. 37.  T. Sanchez, D. T. Chen, S. J. DeCamp, M. Heymann, and Z. Dogic, Spontaneous motion in hierarchically assembled active matter , Nature, 491 (2012), pp. 431--434. 

  38. 38.  E. Teichmann and M. Rosenblum, Solitary states and partial synchrony in oscillatory ensembles with attractive and repulsive interactions , Chaos, 29 (2019), 093124. 

  39. 39.  T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, Novel type of phase transition in a system of self-driven particles , Phys. Rev. Lett., 75 (1995), pp. 1226--1229. 

  40. 40.  A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators , J. Theoret. Biol., 16 (1967), pp. 15--42. 

  41. 41.  D. H. Zanette, Synchronization and frustration in oscillator networks with attractive and repulsive interactions , Europhys. Lett., 72 (2005), pp. 190--196. 

  42. 42.  J. Zhang, J. Zhu, and C. Qian, On equilibria and consensus of the Lohe model with identical oscillators , SIAM J. Appl. Dyn. Syst., 17 (2018), pp. 1716--1741, https://doi.org/10.1137/17M112765X . 

  43. 43.  J. Zhu, Synchronization of Kuramoto model in a high-dimensional linear space , Phys. Lett. A, 377 (2013), pp. 2939--2943. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로