최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Transactions of the American Mathematical Society, v.373 no.2, 2020년, pp.1153 - 1180
Cường, Đoàn Trung , Kwak, Sijong
In this paper, we prove the degree upper bound of projective subschemes in terms of the reduction number and show that the maximal cases are only arithmetically Cohen-Macaulay with linear resolutions. Furthermore, it can be shown that there are only two types of reduced, irreducible projective varie...
Jeaman Ahn and Sijong Kwak, Graded mapping cone theorem, multisecants and syzygies , J. Algebra 331 (2011), 243-262. MR 2774656 , https://doi.org/10.1016/j.jalgebra.2010.07.030
Jeaman Ahn and Sijong Kwak, On syzygies, degree, and geometric properties of projective schemes with property $ {\bf N}_{3,p}$ , J. Pure Appl. Algebra 219 (2015), no. 7, 2724-2739. MR 3313504 , https://doi.org/10.1016/j.jpaa.2014.09.024
Alberto Alzati and Francesco Russo, On the $ k$-normality of projected algebraic varieties , Bull. Braz. Math. Soc. (N.S.) 33 (2002), no. 1, 27-48. MR 1934282 , https://doi.org/10.1007/s005740200001
Alberto Alzati and José Carlos Sierra, A bound on the degree of schemes defined by quadratic equations , Forum Math. 24 (2012), no. 4, 733-750. MR 2949121 , https://doi.org/10.1515/form.2011.081
Isabel Bermejo and Philippe Gimenez, Computing the Castelnuovo-Mumford regularity of some subschemes of $ {\mathbb{P}}_K^n$ using quotients of monomial ideals , J. Pure Appl. Algebra 164 (2001), no. 1-2, 23-33. MR 1854328 , https://doi.org/10.1016/S0022-4049(00)00143-2
M. Boij and J. Söderberg, Betti numbers of graded modules and the Multiplicity Conjecture in the non-Cohen-Macaulay case , Algebra Number Theory 6 (2012), no. 3, 437-454.
David Eisenbud, Commutative algebra: With a view toward algebraic geometry , Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. MR 1322960
David Eisenbud and Shiro Goto, Linear free resolutions and minimal multiplicity , J. Algebra 88 (1984), no. 1, 89-133. MR 0741934 , https://doi.org/10.1016/0021-8693(84)90092-9
David Eisenbud, Mark Green, Klaus Hulek, and Sorin Popescu, Restricting linear syzygies: Algebra and geometry , Compos. Math. 141 (2005), no. 6, 1460-1478. MR 2188445 , https://doi.org/10.1112/S0010437X05001776
David Eisenbud and Frank-Olaf Schreyer, Betti numbers of graded modules and cohomology of vector bundles , J. Amer. Math. Soc. 22 (2009), no. 3, 859-888. MR 2505303 , https://doi.org/10.1090/S0894-0347-08-00620-6
Frank-Olaf Schreyer and David Eisenbud, Betti numbers of syzygies and cohomology of coherent sheaves , Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi, 2010, pp. 586-602. MR 2827810
Christopher A. Francisco, Huy Tài Hà, and Adam Van Tuyl, Splittings of monomial ideals , Proc. Amer. Math. Soc. 137 (2009), no. 10, 3271-3282. MR 2515396 , https://doi.org/10.1090/S0002-9939-09-09929-8
D. R. Grayson and M. E. Stillman, Macaulay $ 2$--A software system for research in algebraic geometry , http://www.math.uiuc.edu/Macaulay2/ .
M. Green, ``Generic initial ideals'', in J. Elias, J. M. Giral, R. M. Miró-Roig, and S. Zarzuela (eds.), Six lectures on commutative algebra , Progress in Mathematics, vol. 166, Birkhäuser, Basel, Switzerland, 1998, pp. 119-186.
Kangjin Han and Sijong Kwak, Analysis on some infinite modules, inner projection, and applications , Trans. Amer. Math. Soc. 364 (2012), no. 11, 5791-5812. MR 2946932 , https://doi.org/10.1090/S0002-9947-2012-05755-2
Robin Hartshorne, Algebraic geometry , Graduate Texts in Mathematics, vol. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
Jürgen Herzog and Takayuki Hibi, Monomial ideals , Graduate Texts in Mathematics, vol. 260, Springer-Verlag London, Ltd., London, 2011. MR 2724673
Jürgen Herzog and Hema Srinivasan, Bounds for multiplicities , Trans. Amer. Math. Soc. 350 (1998), no. 7, 2879-2902. MR 1458304 , https://doi.org/10.1090/S0002-9947-98-02096-0
Le Tuan Hoa, On minimal free resolutions of projective varieties of degree $ ={\rm codimension}+2$ , J. Pure Appl. Algebra 87 (1993), no. 3, 241-250. MR 1228155 , https://doi.org/10.1016/0022-4049(93)90112-7
Hideyuki Matsumura, Commutative ring theory , Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, England, 1986. Translated from the Japanese by M. Reid. MR 0879273
Hirotsugu Naito, Minimal free resolution of curves of degree $ 6$ or lower in the $ 3$-dimensional projective space , Tokyo J. Math. 25 (2002), no. 1, 191-196. MR 1908222 , https://doi.org/10.3836/tjm/1244208945
Irena Peeva, Graded syzygies , Algebra and Applications, vol. 14, Springer-Verlag London, Ltd., London, 2011. MR 2560561
Ngô Việt Trung, Reduction exponent and degree bound for the defining equations of graded rings , Proc. Amer. Math. Soc. 101 (1987), no. 2, 229-236. MR 0902533 , https://doi.org/10.2307/2045987
Wolmer V. Vasconcelos, Arithmetic of blowup algebras , London Mathematical Society Lecture Note Series, vol. 195, Cambridge University Press, Cambridge, England, 1994. MR 1275840
Wolmer V. Vasconcelos, The reduction number of an algebra , Compos. Math. 104 (1996), no. 2, 189-197. MR 1421399
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.