$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Development of Indium-Tin Oxide Diffusion Barrier for Attaining High Reliability of Skutterudite Modules 원문보기

ACS applied energy materials, v.3 no.3, 2020년, pp.2989 - 2995  

Kim, Yeongseon (School of Electrical Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Yuseong-gu, Daejeon 34142 , Republic of Korea) ,  Lee, Ho Seong (School of Materials Science and Engineering , Kyungpook National University , 80 Daehak-ro , Buk-gu, Daegu 41566 , Republic of Korea) ,  Yoon, Giwan (School of Electrical Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Yuseong-gu, Daejeon 34142 , Republic of Korea) ,  Park, Sang Hyun

Abstract AI-Helper 아이콘AI-Helper

Thermoelectric (TE) modules that operate at an intermediate-temperature range (600-900 K) inevitably face reliability issues during their operation when subjected to prolonged thermal cycling or due to the aging of the materials. To maintain the sustained performance of TE modules, antiaging techniq...

Keyword

참고문헌 (44)

  1. Kim, Sang Il, Lee, Kyu Hyoung, Mun, Hyeon A, Kim, Hyun Sik, Hwang, Sung Woo, Roh, Jong Wook, Yang, Dae Jin, Shin, Weon Ho, Li, Xiang Shu, Lee, Young Hee, Snyder, G. Jeffrey, Kim, Sung Wng. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, vol.348, no.6230, 109-114.

  2. Biswas, Kanishka, He, Jiaqing, Zhang, Qichun, Wang, Guoyu, Uher, Ctirad, Dravid, Vinayak P., Kanatzidis, Mercouri G.. Strained endotaxial nanostructures with high thermoelectric figure of merit. Nature chemistry, vol.3, no.2, 160-166.

  3. Koumoto, Kunihito, Wang, Yifeng, Zhang, Ruizhi, Kosuga, Atsuko, Funahashi, Ryoji. Oxide Thermoelectric Materials: A Nanostructuring Approach. Annual review of materials research, vol.40, 363-394.

  4. Poudel, Bed, Hao, Qing, Ma, Yi, Lan, Yucheng, Minnich, Austin, Yu, Bo, Yan, Xiao, Wang, Dezhi, Muto, Andrew, Vashaee, Daryoosh, Chen, Xiaoyuan, Liu, Junming, Dresselhaus, Mildred S., Chen, Gang, Ren, Zhifeng. High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science, vol.320, no.5876, 634-638.

  5. Chen, Z.G., Han, G., Yang, L., Cheng, L., Zou, J.. Nanostructured thermoelectric materials: Current research and future challenge. Progress in natural science : communication of state key laboratories of China, vol.22, no.6, 535-549.

  6. Harman, T. C., Walsh, M. P., laforge, B. E., Turner, G. W.. Nanostructured thermoelectric materials. Journal of electronic materials, vol.34, no.5, L19-L22.

  7. Zhang, Jian, Wu, Di, He, Dongsheng, Feng, Dan, Yin, Meijie, Qin, Xiaoying, He, Jiaqing. Extraordinary Thermoelectric Performance Realized in n‐Type PbTe through Multiphase Nanostructure Engineering. Advanced materials, vol.29, no.39, 1703148-.

  8. Pei, Yanzhong, Wang, Heng, Snyder, G. J.. Band Engineering of Thermoelectric Materials. Advanced materials, vol.24, no.46, 6125-6135.

  9. Yang, L., Chen, Z.G., Han, G., Hong, M., Zou, Y., Zou, J.. High-performance thermoelectric Cu2Se nanoplates through nanostructure engineering. Nano energy, vol.16, 367-374.

  10. Mao, Jun, Liu, Zihang, Zhou, Jiawei, Zhu, Hangtian, Zhang, Qian, Chen, Gang, Ren, Zhifeng. Advances in thermoelectrics. Advances in physics, vol.67, no.2, 69-147.

  11. Pei, Yanzhong, LaLonde, Aaron D., Heinz, Nicholas A., Snyder, G. Jeffrey. High Thermoelectric Figure of Merit in PbTe Alloys Demonstrated in PbTe-CdTe. Advanced energy materials, vol.2, no.6, 670-675.

  12. LaLonde, Aaron D., Pei, Yanzhong, Snyder, G. Jeffrey. Reevaluation of PbTe1−xIx as high performance n-type thermoelectric material. Energy & environmental science, vol.4, no.6, 2090-2096.

  13. Korkosz, Rachel J., Chasapis, Thomas C., Lo, Shih-han, Doak, Jeff W., Kim, Yoon Jun, Wu, Chun-I, Hatzikraniotis, Euripidis, Hogan, Timothy P., Seidman, David N., Wolverton, Chris, Dravid, Vinayak P., Kanatzidis, Mercouri G.. High ZT in p-Type (PbTe)1–2x(PbSe)x(PbS)x Thermoelectric Materials. Journal of the American Chemical Society, vol.136, no.8, 3225-3237.

  14. Shi, Xun, Yang, Jiong, Salvador, James R., Chi, Miaofang, Cho, Jung Y., Wang, Hsin, Bai, Shengqiang, Yang, Jihui, Zhang, Wenqing, Chen, Lidong. Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports. Journal of the American Chemical Society, vol.133, no.20, 7837-7846.

  15. Tang, Yinglu, Gibbs, Zachary M., Agapito, Luis A., Li, Guodong, Kim, Hyun-Sik, Nardelli, Marco Buongiorno, Curtarolo, Stefano, Snyder, G. Jeffrey. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nature materials, vol.14, no.12, 1223-1228.

  16. Khan, Atta U., Kobayashi, Kazuaki, Tang, Dai-Ming, Yamauchi, Yusuke, Hasegawa, Kotone, Mitome, Masanori, Xue, Yanming, Jiang, Baozhen, Tsuchiya, Koichi, Golberg, Dmitri, Bando, Yoshio, Mori, Takao. Nano-micro-porous skutterudites with 100% enhancement in ZT for high performance thermoelectricity. Nano energy, vol.31, 152-159.

  17. Rogl, G., Grytsiv, A., Rogl, P., Bauer, E., Zehetbauer, M.. A new generation of p-type didymium skutterudites with high ZT. Intermetallics, vol.19, no.4, 546-555.

  18. Shi, Hongliang, Ming, Wenmei, Parker, David S., Du, Mao-Hua, Singh, David J.. Prospective high thermoelectric performance of the heavily p -doped half-Heusler compound CoVSn. Physical review. B, vol.95, no.19, 195207-.

  19. Rogl, Gerda, Yubuta, Kunio, Kerber, Michael, Grytsiv, Andriy, Zehetbauer, Michael, Bauer, Ernst, Rogl, Peter. Sustainable and simple processing technique for n-type skutterudites with high ZT and their analysis. Acta materialia, vol.173, 9-19.

  20. Xing, Yunfei, Liu, Ruiheng, Liao, Jinchen, Zhang, Qihao, Xia, Xugui, Wang, Chao, Huang, Hui, Chu, Jing, Gu, Ming, Zhu, Tiejun, Zhu, Chenxi, Xu, Fangfang, Yao, Dongxu, Zeng, Yuping, Bai, Shengqiang, Uher, Ctirad, Chen, Lidong. High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization. Energy & environmental science, vol.12, no.11, 3390-3399.

  21. Joshi, G., Poudel, B.. Efficient and Robust Thermoelectric Power Generation Device Using Hot-Pressed Metal Contacts on Nanostructured Half-Heusler Alloys. Journal of electronic materials, vol.45, no.12, 6047-6051.

  22. High performance p-type segmented leg of misfit-layered cobaltite and half-Heusler alloy. Energy conversion and management, vol.99, 20-27.

  23. Zhang, Qihao, Zhou, Zhenxing, Dylla, Maxwell, Agne, Matthias T., Pei, Yanzhong, Wang, Lianjun, Tang, Yunshan, Liao, Jincheng, Li, Juan, Bai, Shengqiang, Jiang, Wan, Chen, Lidong, Jeffrey Snyder, Gerald. Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites. Nano energy, vol.41, 501-510.

  24. Zhang, Qihao, Liao, Jincheng, Tang, Yunshan, Gu, Ming, Ming, Chen, Qiu, Pengfei, Bai, Shengqiang, Shi, Xun, Uher, Ctirad, Chen, Lidong. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy & environmental science, vol.10, no.4, 956-963.

  25. ZongThese authors contributed equally to this work., Peng-an, Hanus, Riley, Dylla, Maxwell, Tang, Yunshan, Liao, Jingcheng, Zhang, Qihao, Snyder, G. Jeffrey, Chen, Lidong. Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy & environmental science, vol.10, no.1, 183-191.

  26. Perumal, Suresh, Roychowdhury, Subhajit, Biswas, Kanishka. High performance thermoelectric materials and devices based on GeTe. Journal of materials chemistry. C, Materials for optical and electronic devices, vol.4, no.32, 7520-7536.

  27. Park, Sang Hyun, Jin, Younghwan, Cha, Joonil, Hong, Kimin, Kim, Yeongseon, Yoon, Hana, Yoo, Chung-Yul, Chung, In. High-Power-Density Skutterudite-Based Thermoelectric Modules with Ultralow Contact Resistivity Using Fe-Ni Metallization Layers. ACS applied energy materials, vol.1, no.4, 1603-1611.

  28. Kraemer, D., Sui, J., McEnaney, K., Zhao, H., Jie, Q., Ren, Z. F., Chen, G.. High thermoelectric conversion efficiency of MgAgSb-based material with hot-pressed contacts. Energy & environmental science, vol.8, no.4, 1299-1308.

  29. Kim, Yeongseon, Yoon, Giwan, Cho, Byung Jin, Park, Sang Hyun. Multi-Layer Metallization Structure Development for Highly Efficient Polycrystalline SnSe Thermoelectric Devices. Applied sciences, vol.7, no.11, 1116-.

  30. 10.1007/978-3-319-07332-3_9 Brinkfeldt, K.; Simon, J.; Romanjek, K.; Noel, S.; Edwards, M.; Räthel, J.; Da Silva, M.; Andersson, D. Sintered Nano-Ag as Joining Material for Thermoelectric modules. In Proceedings of the 11th European conference on Thermoelecrics , Springer, Chem.: 2014, pp 71−82. 

  31. Wang, Xue, Wang, Hongchao, Su, Wenbin, Zhai, Jinze, Wang, Teng, Chen, Tingting, Mehmood, Fahad, Wang, Chunlei. Optimization of the performance of the SnTe uni-leg thermoelectric module via metallized layers. Renewable energy, vol.131, 606-616.

  32. Joshi, G., Poudel, B.. Efficient and Robust Thermoelectric Power Generation Device Using Hot-Pressed Metal Contacts on Nanostructured Half-Heusler Alloys. Journal of electronic materials, vol.45, no.12, 6047-6051.

  33. Shi, L., Huang, X., Gu, M., Chen, L.. Interfacial structure and stability in Ni/SKD/Ti/Ni skutterudite thermoelements. Surface & coatings technology, vol.285, 312-317.

  34. Muto, Andrew, Yang, Jian, Poudel, Bed, Ren, Zhifeng, Chen, Gang. Skutterudite Unicouple Characterization for Energy Harvesting Applications. Advanced energy materials, vol.3, no.2, 245-251.

  35. Jeong, Seung Hee, Cruz, Francisco Javier, Chen, Si, Gravier, Laurent, Liu, Johan, Wu, Zhigang, Hjort, Klas, Zhang, Shi-Li, Zhang, Zhi-Bin. Stretchable Thermoelectric Generators Metallized with Liquid Alloy. ACS applied materials & interfaces, vol.9, no.18, 15791-15797.

  36. He, Ran, Schierning, Gabi, Nielsch, Kornelius. Thermoelectric Devices: A Review of Devices, Architectures, and Contact Optimization. Advanced materials technologies, vol.3, no.4, 1700256-.

  37. Gu, Ming, Xia, Xugui, Huang, Xiangyang, Bai, Shengqiang, Li, Xiaoya, Chen, Lidong. Study on the interfacial stability of p-type Ti/Ce y Fe x Co4-x Sb12 thermoelectric joints at high temperature. Journal of alloys and compounds, vol.671, 238-244.

  38. Zhao, Degang, Geng, Haoran, Chen, Lidong. Microstructure Contact Studies for Skutterudite Thermoelectric Devices. International journal of applied ceramic technology, vol.9, no.4, 733-741.

  39. Zhao, D., Li, X., He, L., Jiang, W., Chen, L.. High temperature reliability evaluation of CoSb3/electrode thermoelectric joints. Intermetallics, vol.17, no.3, 136-141.

  40. Zhao, D., Tian, C., Tang, S., Liu, Y., Jiang, L., Chen, L.. Fabrication of a CoSb3-based thermoelectric module. Materials science in semiconductor processing, vol.13, no.3, 221-224.

  41. Rogl, Gerda, Grytsiv, Andriy, Failamani, Fainan, Hochenhofer, Markus, Bauer, Ernst, Rogl, Peter. Attempts to further enhance ZT in skutterudites via nano-composites. Journal of alloys and compounds, vol.695, 682-696.

  42. Kim, Y., Yoon, G., Park, S. H.. Direct Contact Resistance Evaluation of Thermoelectric Legs. Experimental mechanics, vol.56, no.5, 861-869.

  43. Li, Guodong, Hao, Shiqiang, Aydemir, Umut, Wood, Max, Goddard, William A., Zhai, Pengcheng, Zhang, Qingjie, Snyder, G. Jeffrey. Structure and Failure Mechanism of the Thermoelectric CoSb3/TiCoSb Interface. ACS applied materials & interfaces, vol.8, no.46, 31968-31977.

  44. Rogl, G., Grytsiv, A., Rogl, P., Bauer, E., Hochenhofer, M., Anbalagan, R., Mallik, R.C., Schafler, E.. Nanostructuring of p- and n-type skutterudites reaching figures of merit of approximately 1.3 and 1.6, respectively. Acta materialia, vol.76, 434-448.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로