$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Defect-Tolerant Sodium-Based Dopant in Charge Transport Layers for Highly Efficient and Stable Perovskite Solar Cells

ACS energy letters, v.5, 2020년, pp.1198 - 1205  

Bang, Su-Mi (Division of Advanced Materials , Korea Research Institute of Chemical Technology (KRICT) , 141 Gajeong-ro, Yuseong-gu , Daejeon 34114 , Republic of Korea) ,  Shin, Seong Sik (Division of Advanced Materials , Korea Research Institute of Chemical Technology (KRICT) , 141 Gajeong-ro, Yuseong-gu , Daejeon 34114 , Republic of Korea) ,  Jeon, Nam Joong (Division of Advanced Materials , Korea Research Institute of Chemical Technology (KRICT) , 141 Gajeong-ro, Yuseong-gu , Daejeon 34114 , Republic of Korea) ,  Kim, Young Yun (Division of Advanced Materials , Korea Research Institute of Chemical Technology (KRICT) , 141 Gajeong-ro, Yuseong-gu , Daejeon 34114 , Republic of Korea) ,  Kim, Geunjin (Division of Advanced Materials , Korea Research Institute of Chemical Technology (KRICT) , 141 Gajeong-ro, Yuseong-gu , Daejeon 34114 , Republic of Korea) ,  Yang, Tae-Youl ,  Seo, Jangwon

Abstract AI-Helper 아이콘AI-Helper

To extract charges more efficiently through charge-transporting layers (CTLs), various dopants are necessary. Lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) is the most widely used dopant in electron- and hole-transporting layers. However, Li+ ions easily migrate into the perovskite and deteri...

참고문헌 (51)

  1. NREL Best Research-Cell Efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20191106.pdf (accessed November 6, 2019). 

  2. Stranks, Samuel D., Eperon, Giles E., Grancini, Giulia, Menelaou, Christopher, Alcocer, Marcelo J. P., Leijtens, Tomas, Herz, Laura M., Petrozza, Annamaria, Snaith, Henry J.. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, vol.342, no.6156, 341-344.

  3. Xing, Guichuan, Mathews, Nripan, Sun, Shuangyong, Lim, Swee Sien, Lam, Yeng Ming, Grätzel, Michael, Mhaisalkar, Subodh, Sum, Tze Chien. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science, vol.342, no.6156, 344-347.

  4. Green, Martin A., Ho-Baillie, Anita, Snaith, Henry J.. The emergence of perovskite solar cells. Nature photonics, vol.8, no.7, 506-514.

  5. Jeon, Nam Joong, Noh, Jun Hong, Yang, Woon Seok, Kim, Young Chan, Ryu, Seungchan, Seo, Jangwon, Seok, Sang Il. Compositional engineering of perovskite materials for high-performance solar cells. Nature, vol.517, no.7535, 476-480.

  6. Yang, Woon Seok, Noh, Jun Hong, Jeon, Nam Joong, Kim, Young Chan, Ryu, Seungchan, Seo, Jangwon, Seok, Sang Il. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, vol.348, no.6240, 1234-1237.

  7. Ng, Annie, Ren, Zhiwei, Shen, Qian, Cheung, Sin Hang, Gokkaya, Huseyin Cem, So, Shu Kong, Djurišić, Aleksandra B., Wan, Yangyang, Wu, Xiaojun, Surya, Charles. Crystal Engineering for Low Defect Density and High Efficiency Hybrid Chemical Vapor Deposition Grown Perovskite Solar Cells. ACS applied materials & interfaces, vol.8, no.48, 32805-32814.

  8. Yang, Woon Seok, Park, Byung-Wook, Jung, Eui Hyuk, Jeon, Nam Joong, Kim, Young Chan, Lee, Dong Uk, Shin, Seong Sik, Seo, Jangwon, Kim, Eun Kyu, Noh, Jun Hong, Seok, Sang Il. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science, vol.356, no.6345, 1376-1379.

  9. Fang, Hong-Hua, Wang, Feng, Adjokatse, Sampson, Zhao, Ni, Even, Jacky, Antonietta Loi, Maria. Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications. Light, science & applications, vol.5, no.4, e16056-.

  10. Zhao, Yicheng, Tan, Hairen, Yuan, Haifeng, Yang, Zhenyu, Fan, James Z., Kim, Junghwan, Voznyy, Oleksandr, Gong, Xiwen, Quan, Li Na, Tan, Chih Shan, Hofkens, Johan, Yu, Dapeng, Zhao, Qing, Sargent, Edward H.. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nature communications, vol.9, no.1, 1607-.

  11. Schulz, Philip, Cahen, David, Kahn, Antoine. Halide Perovskites: Is It All about the Interfaces?. Chemical reviews, vol.119, no.5, 3349-3417.

  12. Wojciechowski, Konrad, Leijtens, Tomas, Siprova, Svetlana, Schlueter, Christoph, Hörantner, Maximilian T., Wang, Jacob Tse-Wei, Li, Chang-Zhi, Jen, Alex K.-Y., Lee, Tien-Lin, Snaith, Henry J.. C60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells. The journal of physical chemistry letters, vol.6, no.12, 2399-2405.

  13. Yang, Dong, Zhou, Xin, Yang, Ruixia, Yang, Zhou, Yu, Wei, Wang, Xiuli, Li, Can, Liu, Shengzhong (Frank), Chang, Robert P. H.. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy & environmental science, vol.9, no.10, 3071-3078.

  14. Anaraki, Elham Halvani, Kermanpur, Ahmad, Steier, Ludmilla, Domanski, Konrad, Matsui, Taisuke, Tress, Wolfgang, Saliba, Michael, Abate, Antonio, Grätzel, Michael, Hagfeldt, Anders, Correa-Baena, Juan-Pablo. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy & environmental science, vol.9, no.10, 3128-3134.

  15. Schulz, Philip. Interface Design for Metal Halide Perovskite Solar Cells. ACS energy letters, vol.3, 1287-1293.

  16. Giordano, Fabrizio, Abate, Antonio, Correa Baena, Juan Pablo, Saliba, Michael, Matsui, Taisuke, Im, Sang Hyuk, Zakeeruddin, Shaik M., Nazeeruddin, Mohammad Khaja, Hagfeldt, Anders, Graetzel, Michael. Enhanced electronic properties in mesoporous TiO 2 via lithium doping for high-efficiency perovskite solar cells. Nature communications, vol.7, 10379-.

  17. Chen, Wei, Wu, Yongzhen, Yue, Youfeng, Liu, Jian, Zhang, Wenjun, Yang, Xudong, Chen, Han, Bi, Enbing, Ashraful, Islam, Grätzel, Michael, Han, Liyuan. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science, vol.350, no.6263, 944-948.

  18. Peng, Jun, Duong, The, Zhou, Xianzhong, Shen, Heping, Wu, Yiliang, Mulmudi, Hemant Kumar, Wan, Yimao, Zhong, Dingyong, Li, Juntao, Tsuzuki, Takuya, Weber, Klaus J., Catchpole, Kylie R., White, Thomas P.. Efficient Indium‐Doped TiOx Electron Transport Layers for High‐Performance Perovskite Solar Cells and Perovskite‐Silicon Tandems. Advanced energy materials, vol.7, no.4, 1601768-.

  19. Pathak, Sandeep K., Abate, A., Ruckdeschel, P., Roose, B., Gödel, Karl C., Vaynzof, Yana, Santhala, Aditya, Watanabe, Shun‐Ichiro, Hollman, Derek J., Noel, Nakita, Sepe, Alessandro, Wiesner, Ullrich, Friend, Richard, Snaith, Henry J., Steiner, Ullrich. Performance and Stability Enhancement of Dye‐Sensitized and Perovskite Solar Cells by Al Doping of TiO2. Advanced functional materials, vol.24, no.38, 6046-6055.

  20. Bai, Yang, Fang, Yanjun, Deng, Yehao, Wang, Qi, Zhao, Jingjing, Zheng, Xiaopeng, Zhang, Yang, Huang, Jinsong. Low Temperature Solution‐Processed Sb:SnO2 Nanocrystals for Efficient Planar Perovskite Solar Cells. ChemSusChem, vol.9, no.18, 2686-2691.

  21. Abdi-Jalebi, Mojtaba, Pazoki, Meysam, Philippe, Bertrand, Dar, M. Ibrahim, Alsari, Mejd, Sadhanala, Aditya, Divitini, Giorgio, Imani, Roghayeh, Lilliu, Samuele, Kullgren, Jolla, Rensmo, Håkan, Grätzel, Michael, Friend, Richard H.. Dedoping of Lead Halide Perovskites Incorporating Monovalent Cations. ACS nano, vol.12, no.7, 7301-7311.

  22. Wang, Kai, Subhani, Waqas Siddique, Wang, Yulong, Zuo, Xiaokun, Wang, Hui, Duan, Lianjie, Liu, Shengzhong (Frank). Metal Cations in Efficient Perovskite Solar Cells: Progress and Perspective. Advanced materials, vol.31, no.50, 1902037-.

  23. Saidaminov, Makhsud I., Kim, Junghwan, Jain, Ankit, Quintero-Bermudez, Rafael, Tan, Hairen, Long, Guankui, Tan, Furui, Johnston, Andrew, Zhao, Yicheng, Voznyy, Oleksandr, Sargent, Edward H.. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nature energy, vol.3, no.8, 648-654.

  24. Dunlap-Shohl, Wiley A., Younts, Robert, Gautam, Bhoj, Gundogdu, Kenan, Mitzi, David B.. Effects of Cd Diffusion and Doping in High-Performance Perovskite Solar Cells Using CdS as Electron Transport Layer. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.120, no.30, 16437-16445.

  25. Bu, Tongle, Liu, Xueping, Zhou, Yuan, Yi, Jianpeng, Huang, Xin, Luo, Long, Xiao, Junyan, Ku, Zhiliang, Peng, Yong, Huang, Fuzhi, Cheng, Yi-Bing, Zhong, Jie. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy & environmental science, vol.10, no.12, 2509-2515.

  26. Li, Nengxu, Tao, Shuxia, Chen, Yihua, Niu, Xiuxiu, Onwudinanti, Chidozie K., Hu, Chen, Qiu, Zhiwen, Xu, Ziqi, Zheng, Guanhaojie, Wang, Ligang, Zhang, Yu, Li, Liang, Liu, Huifen, Lun, Yingzhuo, Hong, Jiawang, Wang, Xueyun, Liu, Yuquan, Xie, Haipeng, Gao, Yongli, Bai, Yang, Yang, Shihe, Brocks, Geert, Chen, Qi, Zhou, Huanping. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nature energy, vol.4, no.5, 408-415.

  27. Rudmann, D., da Cunha, A. F., Kaelin, M., Kurdesau, F., Zogg, H., Tiwari, A. N., Bilger, G.. Efficiency enhancement of Cu(In,Ga)Se2 solar cells due to post-deposition Na incorporation. Applied physics letters, vol.84, no.7, 1129-1131.

  28. Chirilă, Adrian, Reinhard, Patrick, Pianezzi, Fabian, Bloesch, Patrick, Uhl, Alexander R., Fella, Carolin, Kranz, Lukas, Keller, Debora, Gretener, Christina, Hagendorfer, Harald, Jaeger, Dominik, Erni, Rolf, Nishiwaki, Shiro, Buecheler, Stephan, Tiwari, Ayodhya N.. Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nature materials, vol.12, no.12, 1107-1111.

  29. Bi, Cheng, Zheng, Xiaopeng, Chen, Bo, Wei, Haotong, Huang, Jinsong. Spontaneous Passivation of Hybrid Perovskite by Sodium Ions from Glass Substrates: Mysterious Enhancement of Device Efficiency Revealed. ACS energy letters, vol.2, no.6, 1400-1406.

  30. Heo, Jin Hyuck, You, Myoung Sang, Chang, Min Hyuk, Yin, Wenping, Ahn, Tae Kyu, Lee, Sang-Ju, Sung, Shi-Joon, Kim, Dae Hwan, Im, Sang Hyuk. Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode. Nano energy, vol.15, 530-539.

  31. Krüger, Jessica, Plass, Robert, Cevey, Le, Piccirelli, Marco, Grätzel, Michael, Bach, Udo. High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Applied physics letters, vol.79, no.13, 2085-2087.

  32. Yang, Lei, Xu, Bo, Bi, Dongqin, Tian, Haining, Boschloo, Gerrit, Sun, Licheng, Hagfeldt, Anders, Johansson, Erik M. J.. Initial Light Soaking Treatment Enables Hole Transport Material to Outperform Spiro-OMeTAD in Solid-State Dye-Sensitized Solar Cells. Journal of the American Chemical Society, vol.135, no.19, 7378-7385.

  33. Wojciechowski, Konrad, Saliba, Michael, Leijtens, Tomas, Abate, Antonio, Snaith, Henry J.. Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy & environmental science, vol.7, no.3, 1142-1147.

  34. O’Regan, Brian C., Barnes, Piers R. F., Li, Xiaoe, Law, Chunhung, Palomares, Emilio, Marin-Beloqui, Jose M.. Optoelectronic Studies of Methylammonium Lead Iodide Perovskite Solar Cells with Mesoporous TiO2: Separation of Electronic and Chemical Charge Storage, Understanding Two Recombination Lifetimes, and the Evolution of Band Offsets during J-V Hysteresis. Journal of the American Chemical Society, vol.137, no.15, 5087-5099.

  35. Hawash, Zafer, Ono, Luis K., Raga, Sonia R., Lee, Michael V., Qi, Yabing. Air-Exposure Induced Dopant Redistribution and Energy Level Shifts in Spin-Coated Spiro-MeOTAD Films. Chemistry of materials : a publication of the American Chemical Society, vol.27, no.2, 562-569.

  36. Boyd, Caleb C., Cheacharoen, Rongrong, Leijtens, Tomas, McGehee, Michael D.. Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chemical reviews, vol.119, no.5, 3418-3451.

  37. Yang, Jianming, Yuan, Zhongcheng, Liu, Xianjie, Braun, Slawomir, Li, Yanqing, Tang, Jianxin, Gao, Feng, Duan, Chungang, Fahlman, Mats, Bao, Qinye. Oxygen- and Water-Induced Energetics Degradation in Organometal Halide Perovskites. ACS applied materials & interfaces, vol.10, no.18, 16225-16230.

  38. Tan, P., Shyy, W., Zhao, T.S., Zhang, R.H., Zhu, X.B.. Effects of moist air on the cycling performance of non-aqueous lithium-air batteries. Applied energy, vol.182, 569-575.

  39. Gao, Y., Wang, Z., Chen, L.. Stability of spinel Li4Ti5O12 in air. Journal of power sources, vol.245, 684-690.

  40. Xu, Bo, Huang, Jing, Ågren, Hans, Kloo, Lars, Hagfeldt, Anders, Sun, Licheng. AgTFSI as p‐Type Dopant for Efficient and Stable Solid‐State Dye‐Sensitized and Perovskite Solar Cells. ChemSusChem, vol.7, no.12, 3252-3256.

  41. Hock, René, Mayer, Thomas, Jaegermann, Wolfram. p-Type Doping of Spiro-MeOTAD with WO3 and the Spiro-MeOTAD/WO3 Interface Investigated by Synchrotron-Induced Photoelectron Spectroscopy. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.116, no.34, 18146-18154.

  42. Wang, Peng, Zhang, Jing, Zeng, Zhaobing, Chen, Renjie, Huang, Xiaokun, Wang, Liming, Xu, Jie, Hu, Ziyang, Zhu, Yuejin. Copper iodide as a potential low-cost dopant for spiro-MeOTAD in perovskite solar cells. Journal of materials chemistry. C, Materials for optical and electronic devices, vol.4, no.38, 9003-9008.

  43. Xu, Mi, Rong, Yaoguang, Ku, Zhiliang, Mei, Anyi, Li, Xiong, Han, Hongwei. Improvement in Solid-State Dye Sensitized Solar Cells by p-Type Doping with Lewis Acid SnCl4. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.117, no.44, 22492-22496.

  44. Hawash, Zafer, Ono, Luis K., Qi, Yabing. Recent Advances in Spiro‐MeOTAD Hole Transport Material and Its Applications in Organic-Inorganic Halide Perovskite Solar Cells. Advanced materials interfaces, vol.5, no.1, 1700623-.

  45. SeoBoth authors contributed equally to this work., Ji-Youn, Kim, Hui-Seon, Akin, Seckin, Stojanovic, Marko, Simon, Elfriede, Fleischer, Maximilian, Hagfeldt, Anders, Zakeeruddin, Shaik M., Grätzel, Michael. Novel p-dopant toward highly efficient and stable perovskite solar cells. Energy & environmental science, vol.11, no.10, 2985-2992.

  46. Senocrate, Alessandro, Yang, Tae-Youl, Gregori, Giuliano, Kim, Gee Yeong, Grätzel, Michael, Maier, Joachim. Charge carrier chemistry in methylammonium lead iodide. Solid state ionics, vol.321, 69-74.

  47. Zhao, Wangen, Yao, Zhun, Yu, Fengyang, Yang, Dong, Liu, Shengzhong (Frank). Alkali Metal Doping for Improved CH 3 NH 3 PbI 3 Perovskite Solar Cells. Advanced science, vol.5, no.2, 1700131-.

  48. Yamada, Yasuhiro, Nakamura, Toru, Endo, Masaru, Wakamiya, Atsushi, Kanemitsu, Yoshihiko. Photocarrier Recombination Dynamics in Perovskite CH3NH3PbI3 for Solar Cell Applications. Journal of the American Chemical Society, vol.136, no.33, 11610-11613.

  49. Li, Xin, Yang, Junyou, Jiang, Qinghui, Chu, Weijing, Zhang, Dan, Zhou, Zhiwei, Ren, Yangyang, Xin, Jiwu. Enhanced photovoltaic performance and stability in mixed-cation perovskite solar cells via compositional modulation. Electrochimica acta, vol.247, 460-467.

  50. Zhang, Ye, Liu, Mingzhen, Eperon, Giles E., Leijtens, Tomas C., McMeekin, David, Saliba, Michael, Zhang, Wei, de Bastiani, Michele, Petrozza, Annamaria, Herz, Laura M., Johnston, Michael B., Lin, Hong, Snaith, Henry J.. Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells. Materials horizons, vol.2, no.3, 315-322.

  51. Luo, Qiang, Zhang, Ye, Liu, Chengyang, Li, Jianbao, Wang, Ning, Lin, Hong. Iodide-reduced graphene oxide with dopant-free spiro-OMeTAD for ambient stable and high-efficiency perovskite solar cells. Journal of materials chemistry. A, Materials for energy and sustainability, vol.3, no.31, 15996-16004.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로