$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Direct Visualization of Lithium Polysulfides and Their Suppression in Liquid Electrolyte

Nano letters : a journal dedicated to nanoscience and nanotechnology, v.20 no.3, 2020년, pp.2080 - 2086  

Seo, Hyeon Kook (Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea) ,  Hwa, Yoon (Energy Storage and Distributed Resources Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States) ,  Chang, Joon Ha (Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea) ,  Park, Jae Yeol (Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea) ,  Lee, Jae Sang (Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea) ,  Park, Jungjae (Department of Materials Science and Engineering , Korea Advanced Institute of Science an) ,  Cairns, Elton J. ,  Yuk, Jong Min

Abstract AI-Helper 아이콘AI-Helper

Understanding of lithium polysulfide (Li-PS) formation and the shuttle phenomenon is essential for practical application of the lithium/sulfur (Li/S) cell, which has superior theoretical specific energy (2600 Wh/kg). However, it suffers from the lack of direct observation on behaviors of soluble Li-...

Keyword

참고문헌 (34)

  1. Tarascon, J.-M., Armand, M.. Issues and challenges facing rechargeable lithium batteries. Nature, vol.414, no.6861, 359-367.

  2. Ji, Xiulei, Nazar, Linda F.. Advances in Li–S batteries. Journal of materials chemistry, vol.20, no.44, 9821-9826.

  3. Larcher, D., Tarascon, J-M.. Towards greener and more sustainable batteries for electrical energy storage. Nature chemistry, vol.7, no.1, 19-29.

  4. Goodenough, John B., Kim, Youngsik. Challenges for Rechargeable Li Batteries. Chemistry of materials : a publication of the American Chemical Society, vol.22, no.3, 587-603.

  5. Bruce, Peter G., Freunberger, Stefan A., Hardwick, Laurence J., Tarascon, Jean-Marie. Li??O2 and Li??S batteries with high energy storage. Nature materials, vol.11, no.1, 19-29.

  6. Manthiram, Arumugam, Fu, Yongzhu, Chung, Sheng-Heng, Zu, Chenxi, Su, Yu-Sheng. Rechargeable Lithium–Sulfur Batteries. Chemical reviews, vol.114, no.23, 11751-11787.

  7. Manthiram, Arumugam, Chung, Sheng‐Heng, Zu, Chenxi. Lithium–Sulfur Batteries: Progress and Prospects. Advanced materials, vol.27, no.12, 1980-2006.

  8. Lv, Dongping, Zheng, Jianming, Li, Qiuyan, Xie, Xi, Ferrara, Seth, Nie, Zimin, Mehdi, Layla B., Browning, Nigel D., Zhang, Ji‐Guang, Graff, Gordon L., Liu, Jun, Xiao, Jie. High Energy Density Lithium-Sulfur Batteries: Challenges of Thick Sulfur Cathodes. Advanced energy materials, vol.5, no.16, 1402290-.

  9. Mikhaylik, Yuriy V., Akridge, James R.. Polysulfide Shuttle Study in the Li/S Battery System. Journal of the Electrochemical Society : JES, vol.151, no.11, A1969-.

  10. Zhang, S.S.. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. Journal of power sources, vol.231, 153-162.

  11. Cheon, Sang-Eun, Ko, Ki-Seok, Cho, Ji-Hoon, Kim, Sun-Wook, Chin, Eog-Yong, Kim, Hee-Tak. Rechargeable Lithium Sulfur Battery. Journal of the Electrochemical Society : JES, vol.150, no.6, A796-.

  12. Wang, L., Byon, H.R.. N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide-based organic electrolyte for high performance lithium-sulfur batteries. Journal of power sources, vol.236, 207-214.

  13. Park, Jun-Woo, Yamauchi, Kento, Takashima, Eriko, Tachikawa, Naoki, Ueno, Kazuhide, Dokko, Kaoru, Watanabe, Masayoshi. Solvent Effect of Room Temperature Ionic Liquids on Electrochemical Reactions in Lithium–Sulfur Batteries. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.117, no.9, 4431-4440.

  14. Park, Jun-Woo, Ueno, Kazuhide, Tachikawa, Naoki, Dokko, Kaoru, Watanabe, Masayoshi. Ionic Liquid Electrolytes for Lithium–Sulfur Batteries. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.117, no.40, 20531-20541.

  15. Ueno, Kazuhide, Park, Jun-Woo, Yamazaki, Azusa, Mandai, Toshihiko, Tachikawa, Naoki, Dokko, Kaoru, Watanabe, Masayoshi. Anionic Effects on Solvate Ionic Liquid Electrolytes in Rechargeable Lithium–Sulfur Batteries. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.117, no.40, 20509-20516.

  16. Hwa, Yoon, Seo, Hyeon Kook, Yuk, Jong-min, Cairns, Elton J.. Freeze-Dried Sulfur-Graphene Oxide-Carbon Nanotube Nanocomposite for High Sulfur-Loading Lithium/Sulfur Cells. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.17, no.11, 7086-7094.

  17. Song, Min-Kyu, Zhang, Yuegang, Cairns, Elton J.. A Long-Life, High-Rate Lithium/Sulfur Cell: A Multifaceted Approach to Enhancing Cell Performance. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.13, no.12, 5891-5899.

  18. Drvarič Talian, Sara, Bešter-Rogač, Marija, Dominko, Robert. The physicochemical properties of a [DEME][TFSI] ionic liquid-based electrolyte and their influence on the performance of lithium–sulfur batteries. Electrochimica acta, vol.252, 147-153.

  19. Basile, A., Bhatt, A. I., O'Mullane, A. P.. Stabilizing lithium metal using ionic liquids for long-lived batteries. Nature communications, vol.7, ncomms11794-.

  20. Waluś, Sylwia, Barchasz, Céline, Colin, Jean-François, Martin, Jean-Frédéric, Elkaïm, Erik, Leprêtre, Jean-Claude, Alloin, Fannie. New insight into the working mechanism of lithium–sulfur batteries: in situ and operando X-ray diffraction characterization. Chemical communications : Chem comm, vol.49, no.72, 7899-7901.

  21. Kulisch, Jörn, Sommer, Heino, Brezesinski, Torsten, Janek, Jürgen. Simple cathode design for Li–S batteries: cell performance and mechanistic insights by in operando X-ray diffraction. Physical chemistry chemical physics : PCCP, vol.16, no.35, 18765-18771.

  22. Patel, Manu U. M., Dominko, Robert. Application of In Operando UV/Vis Spectroscopy in Lithium-Sulfur Batteries. ChemSusChem, vol.7, no.8, 2167-2175.

  23. Cuisinier, Marine, Cabelguen, Pierre-Etienne, Evers, Scott, He, Guang, Kolbeck, Mason, Garsuch, Arnd, Bolin, Trudy, Balasubramanian, Mahalingam, Nazar, Linda F.. Sulfur Speciation in Li–S Batteries Determined by Operando X-ray Absorption Spectroscopy. The journal of physical chemistry letters, vol.4, no.19, 3227-3232.

  24. Conder, Joanna, Bouchet, Renaud, Trabesinger, Sigita, Marino, Cyril, Gubler, Lorenz, Villevieille, Claire. Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction. Nature energy, vol.2, no.6, 17069-.

  25. Liu, Nian, Zhou, Guangmin, Yang, Ankun, Yu, Xiaoyun, Shi, Feifei, Sun, Jie, Zhang, Jinsong, Liu, Bofei, Wu, Chun-Lan, Tao, Xinyong, Sun, Yongming, Cui, Yi, Chu, Steven. Direct electrochemical generation of supercooled sulfur microdroplets well below their melting temperature. Proceedings of the National Academy of Sciences of the United States of America, vol.116, no.3, 765-770.

  26. Kim, Hyea, Lee, Jung Tae, Magasinski, Alexandre, Zhao, Kejie, Liu, Yang, Yushin, Gleb. In Situ TEM Observation of Electrochemical Lithiation of Sulfur Confined within Inner Cylindrical Pores of Carbon Nanotubes. Advanced energy materials, vol.5, no.24, 1501306-.

  27. Yang, Zhenzhong, Zhu, Zhiyong, Ma, Jie, Xiao, Dongdong, Kui, Xian, Yao, Yuan, Yu, Richeng, Wei, Xiao, Gu, Lin, Hu, Yong‐Sheng, Li, Hong, Zhang, Xixiang. Phase Separation of Li2S/S at Nanoscale during Electrochemical Lithiation of the Solid‐State Lithium–Sulfur Battery Using In Situ TEM. Advanced energy materials, vol.6, no.20, 1600806-.

  28. Yuk, Jong Min, Seo, Hyeon Kook, Choi, Jang Wook, Lee, Jeong Yong. Anisotropic Lithiation Onset in Silicon Nanoparticle Anode Revealed by in Situ Graphene Liquid Cell Electron Microscopy. ACS nano, vol.8, no.7, 7478-7485.

  29. Yuk, Jong Min, Park, Jungwon, Ercius, Peter, Kim, Kwanpyo, Hellebusch, Daniel J., Crommie, Michael F., Lee, Jeong Yong, Zettl, A., Alivisatos, A. Paul. High-Resolution EM of Colloidal Nanocrystal Growth Using Graphene Liquid Cells. Science, vol.336, no.6077, 61-64.

  30. Seo, Hyeon Kook, Park, Jae Yeol, Chang, Joon Ha, Dae, Kyun Sung, Noh, Myoung-Sub, Kim, Sung-Soo, Kang, Chong-Yun, Zhao, Kejie, Kim, Sangtae, Yuk, Jong Min. Strong stress-composition coupling in lithium alloy nanoparticles. Nature communications, vol.10, no.1, 3428-.

  31. Lingane, P. J.. Chronopotentiometry and Chronoamperometry with Unshielded Planar Electrodes.. Analytical chemistry, vol.36, no.9, 1723-1726.

  32. Regan, William, Alem, Nasim, Alemán, Benjamín, Geng, Baisong, Girit, Çağlar, Maserati, Lorenzo, Wang, Feng, Crommie, Michael, Zettl, A.. A direct transfer of layer-area graphene. Applied physics letters, vol.96, no.11, 113102-.

  33. Huang, Jian Yu, Zhong, Li, Wang, Chong Min, Sullivan, John P., Xu, Wu, Zhang, Li Qiang, Mao, Scott X., Hudak, Nicholas S., Liu, Xiao Hua, Subramanian, Arunkumar, Fan, Hongyou, Qi, Liang, Kushima, Akihiro, Li, Ju. In Situ Observation of the Electrochemical Lithiation of a Single SnO 2 Nanowire Electrode. Science, vol.330, no.6010, 1515-1520.

  34. XuThese authors contributed equally to this work., Zheng-Long, Kim, Sung Joo, Chang, Donghee, Park, Kyu-Young, Dae, Kyun Seong, Dao, Khoi Phuong, Yuk, Jong Min, Kang, Kisuk. Visualization of regulated nucleation and growth of lithium sulfides for high energy lithium sulfur batteries. Energy & environmental science, vol.12, no.10, 3144-3155.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로