$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Visualization of Functional Components in a Lithium Silicon Titanium Phosphate-Natural Graphite Composite Anode

ACS applied energy materials, v.3 no.4, 2020년, pp.3253 - 3261  

Kim, Hongjun (Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Guseong-dong, Yuseong-gu, Daejeon 34141 , Republic of Korea) ,  Oh, Jimin (Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Guseong-dong, Yuseong-gu, Daejeon 34141 , Republic of Korea) ,  Park, Gun (Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Guseong-dong, Yuseong-gu, Daejeon 34141 , Republic of Korea) ,  Jetybayeva, Albina (Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Guseong-dong, Yuseong-gu, Daejeon 34141 , Republic of Korea) ,  Kim, Jaegyu (Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Guseo) ,  Lee, Young-Gi ,  Hong, Seungbum

Abstract AI-Helper 아이콘AI-Helper

Here, a multimodal scanning probe microscopy study of a composite anode with a dispersed lithium silicon titanium phosphate (LSTP) lithium ion conductor for all-solid-state batteries is presented. Using electrochemical strain microscopy (ESM) and lateral force microscopy (LFM), electromechanical res...

Keyword

참고문헌 (39)

  1. Quartarone, Eliana, Mustarelli, Piercarlo. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chemical Society reviews, vol.40, no.5, 2525-2540.

  2. Park, M., Zhang, X., Chung, M., Less, G.B., Sastry, A.M.. A review of conduction phenomena in Li-ion batteries. Journal of power sources, vol.195, no.24, 7904-7929.

  3. Zhou, Dong, Liu, Ruliang, He, Yan‐Bing, Li, Fengyun, Liu, Ming, Li, Baohua, Yang, Quan‐Hong, Cai, Qiang, Kang, Feiyu. SiO2 Hollow Nanosphere‐Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life. Advanced energy materials, vol.6, no.7, 1502214-.

  4. 10.1039/C6MH00218H 

  5. Takeuchi, T., Kageyama, H., Nakanishi, K., Ohta, T., Sakuda, A., Sakai, T., Kobayashi, H., Sakaebe, H., Tatsumi, K., Ogumi, Z.. Application of graphite-solid electrolyte composite anode in all-solid-state lithium secondary battery with Li2S positive electrode. Solid state ionics, vol.262, 138-142.

  6. Duan, Jian, Wu, Wangyan, Nolan, Adelaide M., Wang, Tengrui, Wen, Jiayun, Hu, Chenchen, Mo, Yifei, Luo, Wei, Huang, Yunhui. Lithium–Graphite Paste: An Interface Compatible Anode for Solid‐State Batteries. Advanced materials, vol.31, no.10, 1807243-.

  7. Yamamoto, Tokoharu, Phuc, Nguyen Huu Huy, Muto, Hiroyuki, Matsuda, Atsunori. Preparation of Li7P2S8I Solid Electrolyte and Its Application in All-Solid-State Lithium-Ion Batteries with Graphite Anode. Electronic materials letters, vol.15, no.4, 409-414.

  8. Breuer, Stefan, Prutsch, Denise, Ma, Qianli, Epp, Viktor, Preishuber-Pflügl, Florian, Tietz, Frank, Wilkening, Martin. Separating bulk from grain boundary Li ion conductivity in the sol-gel prepared solid electrolyte Li1.5Al0.5Ti1.5(PO4)3. Journal of materials chemistry. A, Materials for energy and sustainability, vol.3, no.42, 21343-21350.

  9. Mertens, Andreas, Yu, Shicheng, Schön, Nino, Gunduz, Deniz C., Tempel, Hermann, Schierholz, Roland, Hausen, Florian, Kungl, Hans, Granwehr, Josef, Eichel, Rüdiger-A.. Superionic bulk conductivity in Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Solid state ionics, vol.309, 180-186.

  10. Arbi, K., Bucheli, W., Jimenez, R., Sanz, J.. High lithium ion conducting solid electrolytes based on NASICON Li 1+x Al x M 2−x (PO 4 ) 3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5). Journal of the European Ceramic Society, vol.35, no.5, 1477-1484.

  11. Xu, Xiaoxiong, Wen, Zhaoyin, Yang, Xuelin, Zhang, Jingchao, Gu, Zhonghua. High lithium ion conductivity glass-ceramics in Li2O–Al2O3–TiO2–P2O5 from nanoscaled glassy powders by mechanical milling. Solid state ionics, vol.177, no.26, 2611-2615.

  12. Balke, N., Jesse, S., Morozovska, A. N., Eliseev, E., Chung, D. W., Kim, Y., Adamczyk, L., García, R. E., Dudney, N., Kalinin, S. V.. Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nature nanotechnology, vol.5, no.10, 749-754.

  13. Kim, Suran, No, Kwangsoo, Hong, Seungbum. Visualization of ion transport in Nafion using electrochemical strain microscopy. Chemical communications : Chem comm, vol.52, no.4, 831-834.

  14. Kalinin, Sergei V., Balke, Nina. Local Electrochemical Functionality in Energy Storage Materials and Devices by Scanning Probe Microscopies: Status and Perspectives. Advanced materials, vol.22, no.35, E193-E209.

  15. Zhu, Jing, Lu, Li, Zeng, Kaiyang. Nanoscale Mapping of Lithium-Ion Diffusion in a Cathode within an All-Solid-State Lithium-Ion Battery by Advanced Scanning Probe Microscopy Techniques. ACS nano, vol.7, no.2, 1666-1675.

  16. Schön, Nino, Gunduz, Deniz Cihan, Yu, Shicheng, Tempel, Hermann, Schierholz, Roland, Hausen, Florian. Correlative electrochemical strain and scanning electron microscopy for local characterization of the solid state electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3. Beilstein journal of nanotechnology, vol.9, 1564-1572.

  17. Jesse, Stephen, Balke, Nina, Eliseev, Eugene, Tselev, Alexander, Dudney, Nancy J., Morozovska, Anna N., Kalinin, Sergei V.. Direct Mapping of Ionic Transport in a Si Anode on the Nanoscale: Time Domain Electrochemical Strain Spectroscopy Study. ACS nano, vol.5, no.12, 9682-9695.

  18. Mueller, A., Kowalewski, T., Wooley, K. L.. Synthesis, Characterization, and Derivatization of Hyperbranched Polyfluorinated Polymers. Macromolecules, vol.31, no.3, 776-786.

  19. Vakarelski, Ivan U., Brown, Scott C., Basim, G. Bahar, Rabinovich, Yakov I., Moudgil, Brij M.. Tailoring Silica Nanotribology for CMP Slurry Optimization: Ca2+ Cation Competition in C12TAB Mediated Lubrication. ACS applied materials & interfaces, vol.2, no.4, 1228-1235.

  20. Wei, Haoyan, Kim, Sang Nyon, Kim, Sejong, Huey, Bryan D., Papadimitrakopoulos, Fotios, Marcus, Harris L.. Site-specific forest-assembly of single-wall carbon nanotubes on electron-beam patterned SiOx/Si substrates. Materials science & engineering. C, Materials for biological applications, vol.28, no.8, 1366-1371.

  21. Sansotera, Maurizio, Navarrini, Walter, Magagnin, Luca, Bianchi, Claudia L., Sanguineti, Aldo, Metrangolo, Pierangelo, Resnati, Giuseppe. Hydrophobic carbonaceous materials obtained by covalent bonding of perfluorocarbon and perfluoropolyether chains. Journal of materials chemistry, vol.20, no.39, 8607-8616.

  22. Arias, Diego F., Marulanda, Diana M., Baena, Alejandra M., Devia, Alfonso. Determination of friction coefficient on ZrN and TiN using lateral force microscopy (LFM). Wear: An international journal on the science and technology of friction, lubrication and wear, vol.261, no.11, 1232-1236.

  23. Breakspear, S., Smith, J. R., Nevell, T. G., Tsibouklis, J.. Friction coefficient mapping using the atomic force microscope. Surface and interface analysis : SIA, vol.36, no.9, 1330-1334.

  24. Cyganik, P., Budkowski, A., Raczkowska, J., Postawa, Z.. AFM/LFM surface studies of a ternary polymer blend cast on substrates covered by a self-assembled monolayer. Surface science, vol.507, 700-706.

  25. Fischer, Hartmut R., Cernescu, Adrian. Relation of chemical composition to asphalt microstructure – Details and properties of micro-structures in bitumen as seen by thermal and friction force microscopy and by scanning near-filed optical microscopy. Fuel, vol.153, 628-633.

  26. Marsden, A J, Phillips, M, Wilson, N R. Friction force microscopy: a simple technique for identifying graphene on rough substrates and mapping the orientation of graphene grains on copper. Nanotechnology, vol.24, no.25, 255704-.

  27. Raczkowska, J., Montenegro, R., Budkowski, A., Landfester, K., Bernasik, A., Rysz, J., Pawel Czuba. Structure Evolution in Layers of Polymer Blend Nanoparticles. Langmuir : the ACS journal of surfaces and colloids, vol.23, no.13, 7235-7240.

  28. Sun, Shuqing, Chong, Karen S L, Leggett, Graham J. Photopatterning of self-assembled monolayers at 244 nm and applications to the fabrication of functional microstructures and nanostructures. Nanotechnology, vol.16, no.9, 1798-1808.

  29. Nanoscale phenomena in ferroelectric thin films Hong S. B. 111 2004 10.1007/978-1-4419-9044-0_5 

  30. Hong, Seungbum, Woo, Jungwon, Shin, Hyunjung, Jeon, Jong Up, Pak, Y. Eugene, Colla, Enrico L., Setter, Nava, Kim, Eunah, No, Kwangsoo. Principle of ferroelectric domain imaging using atomic force microscope. Journal of applied physics, vol.89, no.2, 1377-1386.

  31. Gannepalli, A, Yablon, D G, Tsou, A H, Proksch, R. Mapping nanoscale elasticity and dissipation using dual frequency contact resonance AFM. Nanotechnology, vol.22, no.35, 355705-.

  32. Reinstädtler, M., Rabe, U., Scherer, V., Hartmann, U., Goldade, A., Bhushan, B., Arnold, W.. On the nanoscale measurement of friction using atomic-force microscope cantilever torsional resonances. Applied physics letters, vol.82, no.16, 2604-2606.

  33. Kalinin, Sergei V., Bonnell, Dawn A.. Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Physical review. B, Condensed matter and materials physics, vol.65, no.12, 125408-.

  34. Kalinin, Sergei V., Bonnell, Dawn A.. Contrast Mechanism Maps for Piezoresponse Force Microscopy. Journal of materials research, vol.17, no.5, 936-939.

  35. Balke, N., Eliseev, E. A., Jesse, S., Kalnaus, S., Daniel, C., Dudney, N. J., Morozovska, A. N., Kalinin, S. V.. Three-dimensional vector electrochemical strain microscopy. Journal of applied physics, vol.112, no.5, 052020-.

  36. Monchak, Mykhailo, Hupfer, Thomas, Senyshyn, Anatoliy, Boysen, Hans, Chernyshov, Dmitry, Hansen, Thomas, Schell, Karl G., Bucharsky, Ethel C., Hoffmann, Michael J., Ehrenberg, Helmut. Lithium Diffusion Pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) Superionic Conductor. Inorganic chemistry, vol.55, no.6, 2941-2945.

  37. Jesse, S, Guo, S, Kumar, A, Rodriguez, B J, Proksch, R, Kalinin, S V. Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy. Nanotechnology, vol.21, no.40, 405703-.

  38. Yang, Sang Mo, Mazet, Lucie, Okatan, M. Baris, Jesse, Stephen, Niu, Gang, Schroeder, Thomas, Schamm-Chardon, Sylvie, Dubourdieu, Catherine, Baddorf, Arthur P., Kalinin, Sergei V.. Decoupling indirect topographic cross-talk in band excitation piezoresponse force microscopy imaging and spectroscopy. Applied physics letters, vol.108, no.25, 252902-.

  39. Balke, Nina, Kalnaus, Sergiy, Dudney, Nancy J., Daniel, Claus, Jesse, Stephen, Kalinin, Sergei V.. Local Detection of Activation Energy for Ionic Transport in Lithium Cobalt Oxide. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.12, no.7, 3399-3403.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로