$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Pecan (Carya illinoinensis (Wagenh.) K. Koch) Nut Shell as an Accessible Polyphenol Source for Active Packaging and Food Colorant Stabilization 원문보기

ACS sustainable chemistry et engineering, v.8 no.17, 2020년, pp.6700 - 6712  

Moccia, Federica (Department of Chemical Sciences , University of Naples “Federico II” , Via Cintia 4 , I-80126 Naples , Italy) ,  Agustin-Salazar, Sarai (Institute for Polymers, Composites and Biomaterials (IPCB-CNR) , Via Campi Flegrei 34 , I-80078 Pozzuoli , Italy) ,  Berg, Anna-Lisa (Institute of Nutritional and Food Sciences, Molecular Food Technology , University of Bonn , Endenicher Allee 19b , D-53115 Bonn , Germany) ,  Setaro, Brunella (Department of Chemical Sciences , University of Naples “Federico II” , Via Cintia 4 , I-80126 Naples , Italy) ,  Micillo, Raffaella (Department of Chemical Sciences , University of Naples “Federico II” , Via Cintia 4 , I-80126 Naples , Italy) ,  Pizzo, Elio (Department of Biology , University of Naples “Federico II” , 80126 Naples , Italy) ,  Weber, Fabian (Institute of Nutritional and Food Sciences, Molecular Food Technology , University of Bonn , Endenicher Allee 19b , D-53115 Bonn , Germany Germ) ,  Gamez-Meza, Nohemi ,  Schieber, Andreas ,  Cerruti, Pierfrancesco ,  Panzella, Lucia ,  Napolitano, Alessandra

Abstract AI-Helper 아이콘AI-Helper

Herein, the antioxidant and food stabilizing properties of a pecan nut shell (PNS) hydroalcoholic extract (PNSE) are reported. Chemical degradation of PNSE demonstrated the presence of condensed tannins as the main phenolic components. PNSE showed remarkable antioxidant properties in the 2,2-dipheny...

Keyword

참고문헌 (95)

  1. Reano A. F. ; CheRubin J. ; Peru A. M. M. ; Wang Q. ; Clement T. ; Domenek S. ; Allais F. Structure?activity relationships and structural design optimization of a series of p-hydroxycinnamic acids-based bis- and trisphenols as novel sustainable antiradical/antioxidant additives . ACS Sustainable Chem. Eng. 2015 , 3 , 3486 ? 3496 . 10.1021/acssuschemeng.5b01281 . 

  2. Mark R. ; Lyu X. ; Lee J. J. L. ; Parra-Saldivar R. ; Chen W. N. Sustainable production of natural phenolics for functional food applications . J. Funct. Foods 2019 , 57 , 233 ? 254 . 10.1016/j.jff.2019.04.008 . 

  3. Dunaway S. ; Odin R. ; Zhou L. ; Ji L. ; Zhang Y. ; Kadekaro A. L. Natural antioxidants: multiple mechanisms to protect skin from solar radiation . Front. Pharmacol. 2018 , 9 , 392 10.3389/fphar.2018.00392 . 29740318 

  4. Piccolella S. ; Crescente G. ; Candela L. ; Pacifico S. Nutraceutical polyphenols: new analytical challenges and opportunities . J. Pharm. Biomed. Anal. 2019 , 175 , 112774 10.1016/j.jpba.2019.07.022 . 31336288 

  5. Faustino M. ; Veiga M. ; Sousa P. ; Costa E. M. ; Silva S. ; Pintado M. Agro-food byproducts as a new source of natural food additives . Molecules 2019 , 24 , 1056 10.3390/molecules24061056 . 

  6. Rehan M. ; Abdel-Wahed N. A. M. ; Farouk A. ; El-Zawahry M. M. Extraction of valuable compounds from orange peel waste for advanced functionalization of cellulosic surfaces . ACS Sustainable Chem. Eng. 2018 , 6 , 5911 ? 5928 . 10.1021/acssuschemeng.7b04302 . 

  7. Jin Q. ; Neilson A. P. ; Stewart A. C. ; O’Keefe S. F. ; Kim Y.-T. ; McGuire M. ; Wilder G. ; Huang H. An integrated approach for the valorization of red grape pomace: production of oil, polyphenols, and acetone?butanol?ethanol (ABE) . ACS Sustainable Chem. Eng. 2018 , 6 , 16279 ? 16286 . 10.1021/acssuschemeng.8b03136 . 

  8. Zuin V. G. ; Ramin L. Z. Green and sustainable separation of natural products from agro-industrial waste: challenges, potentialities, and perspectives on emerging approaches . Topics Curr. Chem. 2018 , 376 , 1 ? 54 . 10.1007/s41061-017-0182-z . 

  9. Kammerer D. R. ; Kammerer J. ; Valet R. ; Carle R. Recovery of polyphenols from the by-products of plant food processing and application as valuable food ingredients . Food Res. Int. 2014 , 65 ( Part A ), 2 ? 12 . 10.1016/j.foodres.2014.06.012 . 

  10. Panzella L. ; Napolitano A. Natural phenol polymers: recent advances in food and health applications . Antioxidants 2017 , 6 , 30 10.3390/antiox6020030 . 

  11. Dintcheva N. T. ; D’Anna F. Anti-/pro-oxidant behavior of naturally occurring molecules in polymers and biopolymers: a brief review . ACS Sustainable Chem. Eng. 2019 , 7 , 12656 ? 12670 . 10.1021/acssuschemeng.9b02127 . 

  12. Mir S. A. ; Dar B. N. ; Wani A. A. ; Shah M. A. Effect of plant extracts on the techno-functional properties of biodegradable packaging films . Trends Food Sci. Technol. 2018 , 80 , 141 ? 154 . 10.1016/j.tifs.2018.08.004 . 

  13. Kai D. ; Zhang K. ; Jiang L. ; Wong H. Z. ; Li Z. ; Zhang Z. ; Loh X. J. Sustainable and antioxidant lignin?polyester copolymers and nanofibers for potential healthcare applications . ACS Sustainable Chem. Eng. 2017 , 5 , 6016 ? 6025 . 10.1021/acssuschemeng.7b00850 . 

  14. Valdes A. ; Mellinas C. A. ; Ramos M. ; Garrigos M. C. ; Jimenez A. Natural additives and agricultural wastes in biopolymer formulations for food packaging . Front. Chem. 2014 , 2 , 1 ? 10 . 10.3389/fchem.2014.00006 . 

  15. Ulloa P. A. ; Vidal J. ; Lopez de Dicastillo C. ; Rodriguez F. ; Guarda A. ; Cruz R. M. S. ; Galotto M. J. Development of poly(lactic acid) films with propolis as a source of active compounds: biodegradability, physical, and functional properties . J. Appl. Polym. Sci. 2019 , 136 , 47090 10.1002/app.47090 . 

  16. Rigoussen A. ; Verge P. ; Raquez J.-M. ; Dubois P. Natural phenolic antioxidants as a source of biocompatibilizers for immiscible polymer blends . ACS Sustainable Chem. Eng. 2018 , 6 , 13349 ? 13357 . 10.1021/acssuschemeng.8b02999 . 

  17. Agustin-Salazar S. ; Gamez-Meza N. ; Medina-Juarez L. A. ; Soto-Valdez H. ; Cerruti P. From nutraceutics to materials: effect of resveratrol on the stability of polylactide . ACS Sustainable Chem. Eng. 2014 , 2 , 1534 ? 1542 . 10.1021/sc5002337 . 

  18. Ambrogi V. ; Panzella L. ; Persico P. ; Cerruti P. ; Lonz C. A. ; Carfagna C. ; Verotta L. ; Caneva E. ; Napolitano A. ; d’Ischia M. An antioxidant bioinspired phenolic polymer for efficient stabilization of polyethylene . Biomacromolecules 2014 , 15 , 302 ? 310 . 10.1021/bm4015478 . 24313867 

  19. Luzi F. ; Fortunati E. ; Di Michele A. ; Pannucci E. ; Botticella E. ; Santi L. ; Kenny J. M. ; Torre L. ; Bernini R. Nanostructured starch combined with hydroxytyrosol in poly(vinyl alcohol) based ternary films as active packaging system . Carbohydr. Polym. 2018 , 193 , 239 ? 248 . 10.1016/j.carbpol.2018.03.079 . 29773378 

  20. Olejar K. J. ; Ray S. ; Ricci A. ; Kilmartin P. A. Superior antioxidant polymer films created through the incorporation of grape tannins in ethyl cellulose . Cellulose 2014 , 21 , 4545 ? 4556 . 10.1007/s10570-014-0447-4 . 

  21. Iyer K. ; Zhang L. ; Torkelson J. M. Direct use of natural antioxidant-rich agro-wastes as thermal stabilizer for polymer: processing and recycling . ACS Sustainable Chem. Eng. 2016 , 4 , 881 ? 889 . 10.1021/acssuschemeng.5b00945 . 

  22. Etxabide A. ; Uranga J. ; Guerrero P. ; de la Caba K. Development of active gelatin films by means of valorisation of food processing waste: a review . Food Hydrocolloids 2017 , 68 , 192 ? 198 . 10.1016/j.foodhyd.2016.08.021 . 

  23. Panzella L. ; Cerruti P. ; Ambrogi V. ; Agustin-Salazar S. ; D’Errico G. ; Carfagna C. ; Goya L. ; Ramos S. ; Martin M. A. ; Napolitano A. ; d’Ischia M. A superior all-natural antioxidant biomaterial from spent coffee grounds for polymer stabilization, cell protection, and food lipid preservation . ACS Sustainable Chem. Eng. 2016 , 4 , 1169 ? 1179 . 10.1021/acssuschemeng.5b01234 . 

  24. Agustin-Salazar S. ; Gamez-Meza N. ; Medina-Juarez L. A. ; Malinconico M. ; Cerruti P. Stabilization of polylactic acid and polyethylene with nutshell extract: efficiency assessment and economic evaluation . ACS Sustainable Chem. Eng. 2017 , 5 , 4607 ? 4618 . 10.1021/acssuschemeng.6b03124 . 

  25. Agustin-Salazar S. ; Cerruti P. ; Medina-Juarez L. A. ; Scarinzi G. ; Malinconico M. ; Soto-Valdez H. ; Gamez-Meza N. Lignin and holocellulose from pecan nutshell as reinforcing fillers in poly (lactic acid) biocomposites . Int. J. Biol. Macromol. 2018 , 115 , 727 ? 736 . 10.1016/j.ijbiomac.2018.04.120 . 29702173 

  26. Lima H. H. C. ; Maniezzo R. S. ; Llop M. E. G. ; Kupfer V. L. ; Arroyo P. A. ; Guilherme M. R. ; Rubira A. F. ; Girotto E. M. ; Rinaldi A. W. Synthesis and characterization of pecan nutshell-based adsorbent with high specific area and high methylene blue adsorption capacity . J. Mol. Liq. 2019 , 276 , 570 ? 576 . 10.1016/j.molliq.2018.12.010 . 

  27. Zazycki M. A. ; Godinho M. ; Perondi D. ; Foletto E. L. ; Collazzo G. C. ; Dotto G. L. New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions . J. Cleaner Prod. 2018 , 171 , 57 ? 65 . 10.1016/j.jclepro.2017.10.007 . 

  28. Ahmedna M. ; Marshall W. E. ; Husseiny A. A. ; Rao R. M. ; Goktepe I. The use of nutshell carbons in drinking water filters for removal of trace metals . Water Res. 2004 , 38 , 1062 ? 1068 . 10.1016/j.watres.2003.10.047 . 14769427 

  29. Alvarez-Chavez C. R. ; Sanchez-Acosta D. L. ; Encinas-Encinas J. C. ; Esquer J. ; Quintana-Owen P. ; Madera-Santana T. J. Characterization of extruded poly(lactic acid)/pecan nutshell biocomposites . Int. J. Polym. Sci. 2017 , 2017 , 1 10.1155/2017/3264098 . 

  30. Engler Ribeiro P. C. ; de Britto Policarpi P. ; Dal Bo A. ; Barbetta P. A. ; Block J. M. Impact of pecan nut shell aqueous extract on the oxidative properties of margarines during storage . J. Sci. Food Agric. 2017 , 97 , 3005 ? 3012 . 10.1002/jsfa.8141 . 27859283 

  31. Dorame-Miranda R. F. ; Gamez-Meza N. ; Medina-Juarez L. A. ; Ezquerra-Brauer J. M. ; Ovando-Martinez M. ; Lizardi-Mendoza J. Bacterial cellulose production by Gluconacetobacter entanii using pecan nutshell as carbon source and its chemical functionalization . Carbohydr. Polym. 2019 , 207 , 91 ? 99 . 10.1016/j.carbpol.2018.11.067 . 30600072 

  32. Medina-Morales M. A. ; Martinez-Hernandez J. L. ; de la Garza H. ; Aguilar C. N. Cellulolytic enzymes production by solid state culture using nut shell as substrate and support . Am. J. Agric. Biol. Sci. 2011 , 6 , 196 ? 200 . 10.3844/ajabssp.2011.196.200 . 

  33. Weber F. ; Boch K. ; Schieber A. Influence of copigmentation on the stability of spray dried anthocyanins from blackberry . LWT - Food Sci. Technol. 2017 , 75 , 72 ? 77 . 10.1016/j.lwt.2016.08.042 . 

  34. Munoz-Garcia A. B. ; Sannino F. ; Vitiello G. ; Pirozzi D. ; Minieri L. ; Aronne A. ; Pernice P. ; Pavone M. ; D’Errico G. Origin and electronic features of reactive oxygen species at hybrid zirconia-acetylacetonate interfaces . ACS Appl. Mater. Interfaces 2015 , 7 , 21662 ? 2166 . 10.1021/acsami.5b06988 . 26394654 

  35. Panzella L. ; D’Errico G. ; Vitiello G. ; Perfetti M. ; Alfieri M. L. ; Napolitano A. ; d’Ischia M. Disentangling structure-dependent antioxidant mechanisms in phenolic polymers by multiparametric EPR analysis . Chem. Commun. 2018 , 54 , 9426 ? 9429 . 10.1039/C8CC05989F . 

  36. Kennedy J. A. ; Jones G. P. Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol . J. Agric. Food Chem. 2001 , 49 , 1740 ? 1746 . 10.1021/jf001030o . 11308320 

  37. Gea A. ; Stringano E. ; Brown R. H. ; Mueller-Harvey I. In situ analysis and structural elucidation of sainfoin ( Onobrychis viciifolia ) tannins for high throughput germplasm screening . J. Agric. Food Chem. 2011 , 59 , 495 ? 503 . 10.1021/jf103609p . 21175139 

  38. Panzella L. ; Eidenberger T. ; Napolitano A. Anti-amyloid aggregation activity of black sesame pigment: toward a novel Alzheimer’s disease preventive agent . Molecules 2018 , 23 , 676 10.3390/molecules23030676 . 

  39. Goupy P. ; Dufour C. ; Loonis M. ; Dangles O. Quantitative kinetic analysis of hydrogen transfer reactions from dietary polyphenols to the DPPH radical . J. Agric. Food Chem. 2003 , 51 , 615 ? 622 . 10.1021/jf025938l . 12537431 

  40. Benzie I. F. F. ; Strain J. J. The Ferric Reducing Ability of Plasma (FRAP) as a measure of ″antioxidant power″: the FRAP assay . Anal. Biochem. 1996 , 239 , 70 ? 76 . 10.1006/abio.1996.0292 . 8660627 

  41. Micillo R. ; Sires-Campos J. ; Garcia-Borron J. C. ; Panzella L. ; Napolitano A. ; Olivares C. Conjugation with dihydrolipoic acid imparts caffeic acid ester potent inhibitory effect on dopa oxidase activity of human tyrosinase . Int. J. Mol. Sci. 2018 , 19 , 2156 10.3390/ijms19082156 . 

  42. Micillo R. ; Pistorio V. ; Pizzo E. ; Panzella L. ; Napolitano A. ; d’Ischia M. 2-S-lipoylcaffeic acid, a natural product-based entry to tyrosinase inhibition via catechol manipulation . Biomimetics 2017 , 2 , 15 10.3390/biomimetics2030015 . 

  43. Pathare P. B. ; Opara U. L. ; Al-Said F. A.-J. Colour measurement and analysis in fresh and processed foods: a review . Food Bioprocess Technol. 2013 , 6 , 36 ? 60 . 10.1007/s11947-012-0867-9 . 

  44. Gras C. C. ; Bogner H. ; Carle R. ; Schweiggert R. M. Effect of genuine non-anthocyanin phenolics and chlorogenic acid on color and stability of black carrot ( Daucus carota ssp. sativus var. atrorubens Alef.) anthocyanins . Food Res. Int. 2016 , 85 , 291 ? 300 . 10.1016/j.foodres.2016.05.006 . 29544847 

  45. Panzella L. ; Gentile G. ; D’Errico G. ; Della Vecchia N. F. ; Errico M. E. ; Napolitano A. ; Carfagna C. ; d’Ischia M. Atypical structural and π-electron features of a melanin polymer that lead to superior free-radical-scavenging properties . Angew. Chem., Int. Ed. 2013 , 52 , 12684 ? 12687 . 10.1002/anie.201305747 . 

  46. Hilbig J. ; Alves V. R. ; Muller C. M. O. ; Micke G. A. ; Vitali L. ; Pedrosa R. C. ; Block J. M. Ultrasonic-assisted extraction combined with sample preparation and analysis using LC-ESI-MS/MS allowed the identification of 24 new phenolic compounds in pecan nut shell [ Carya illinoinensis (Wangenh) C. Koch] extracts . Food Res. Int. 2018 , 106 , 549 ? 557 . 10.1016/j.foodres.2018.01.010 . 29579960 

  47. Pinheiro do Prado A. C. ; Silvestre da Silva H. ; Mello da Silveira S. ; Barreto P. L. M. ; Vieira C. R. W. ; Maraschin M. ; Ferreira S. R. S. ; Block J. M. Effect of the extraction process on the phenolic compounds profile and the antioxidant and antimicrobial activity of extracts of pecan nut [ Carya illinoinensis (Wangenh) C. Koch] shell . Ind. Crops Prod. 2014 , 52 , 552 ? 561 . 10.1016/j.indcrop.2013.11.031 . 

  48. Reckziegel P. ; Boufleur N. ; Barcelos R. C. S. ; Benvegnu D. M. ; Pase C. S. ; Muller L. G. ; Teixeira A. M. ; Zanella R. ; Prado A. C. P. ; Fett R. ; Block J. M. ; Burger M. E. Oxidative stress and anxiety-like symptoms related to withdrawal of passive cigarette smoke in mice: beneficial effects of pecan nut shells extract, a by-product of the nut industry . Ecotoxicol. Environ. Saf. 2011 , 74 , 1770 ? 1778 . 10.1016/j.ecoenv.2011.04.022 . 21531023 

  49. de la Rosa L. A. ; Alvarez-Parrilla E. ; Shahidi F. Phenolic compounds and antioxidant activity of kernels and shells of Mexican pecan ( Carya illinoinensis ) . J. Agric. Food Chem. 2011 , 59 , 152 ? 162 . 10.1021/jf1034306 . 21138247 

  50. Vazquez-Flores A. A. ; Martinez-Gonzalez A. I. ; Alvarez-Parrilla E. ; Diaz-Sanchez A. G. ; de la Rosa L. A. ; Gonzalez-Aguilar G. A. ; Aguilar C. N. Proanthocyanidins with a low degree of polymerization are good inhibitors of digestive enzymes because of their ability to form specific interactions: a hypothesis . J. Food Sci. 2018 , 83 , 2895 ? 2902 . 10.1111/1750-3841.14386 . 30444271 

  51. de la Rosa L. A. ; Vazquez-Flores A. A. ; Alvarez-Parrilla E. ; Rodrigo-Garcia J. ; Medina-Campos O. N. ; Avila-Nava A. ; Gonzalez-Reyes S. ; Pedraza-Chaverri J. Content of major classes of polyphenolic compounds, antioxidant, antiproliferative, and cell protective activity of pecan crude extracts and their fractions . J. Funct. Foods 2014 , 7 , 219 ? 228 . 10.1016/j.jff.2014.02.008 . 

  52. Hilbig J. ; Policarpi P. B. ; Grinevicius V. M. A. S. ; Mota N. S. R. S. ; Toaldo I. M. ; Luiz M. T. B. ; Pedrosa R. C. ; Block J. M. Aqueous extract from pecan nut [ Carya illinoinensis (Wangenh) C. Koch] shell show activity against breast cancer cell line MCF-7 and Ehrlich ascites tumor in Balb-C mice . J. Ethnopharmacol. 2018 , 211 , 256 ? 266 . 10.1016/j.jep.2017.08.012 . 28807853 

  53. Goya L. ; Martin M. A. ; Ramos S. ; Mateos R. ; Bravo L. A cell culture model for the assessment of the chemopreventive potential of antioxidant compounds . Curr. Nutr. Food Sci. 2009 , 5 , 56 ? 64 . 10.2174/157340109787314721 . 

  54. Trevisan G. ; Rossato M. F. ; Hoffmeister C. ; Muller L. G. ; Pase C. ; Cordova M. M. ; Rosa F. ; Tonello R. ; Hausen B. S. ; Boligon A. A. ; Moresco R. N. ; Athayde M. L. ; Burguer M. E. ; Santos A. R. ; Ferreira J. Antinociceptive and antiedematogenic effect of pecan ( Carya illinoensis ) nut shell extract in mice: a possible beneficial use for a by-product of the nut industry . J. Basic Clin. Physiol. Pharmacol. 2014 , 25 , 1 ? 10 . 10.1515/jbcpp-2013-0137 . 23959662 

  55. Benvegnu D. M. ; Barcelos R. C. ; Roversi K. ; Boufleur N. ; Pase C. S. ; Trevizol F. ; Segat H. J. ; Dias V. T. ; Dolci G. S. ; Antoniazzi C. T. ; Reckziegel P. ; Lima F. ; de Lima L. A. ; de Carvalho L. M. ; da Silva Junior V. A. ; Burger M. E. Aqueous extract of pecan nut shell ( Carya illinoensis [Wangenh.] K. Koch) exerts protection against oxidative damage induced by cyclophosphamide in rat testis . J. Environ. Pathol., Toxicol. Oncol. 2013 , 32 , 329 ? 341 . 10.1615/JEnvironPatholToxicolOncol.2013008305 . 24579785 

  56. Muller L. G. ; Pase C. S. ; Reckziegel P. ; Barcelos R. C. ; Boufleur N. ; Prado A. C. ; Fett R. ; Block J. M. ; Pavanato M. A. ; Bauermann L. F. ; da Rocha J. B. ; Burger M. E. Hepatoprotective effects of pecan nut shells on ethanol-induced liver damage . Exp. Toxicol. Pathol. 2013 , 65 , 165 ? 171 . 10.1016/j.etp.2011.08.002 . 21924598 

  57. Porto L. C. ; da Silva J. ; Ferraz Ade B. ; Correa D. S. ; dos Santos M. S. ; Porto C. D. ; Picada J. N. Evaluation of acute and subacute toxicity and mutagenic activity of the aqueous extract of pecan shells [ Carya illinoinensis (Wangenh.) K. Koch] . Food Chem. Toxicol. 2013 , 59 , 579 ? 585 . 10.1016/j.fct.2013.06.048 . 23831307 

  58. Iniguez-Franco F. ; Soto-Valdez H. ; Peralta E. ; Ayala-Zavala J. F. ; Auras R. ; Gamez-Meza N. Antioxidant activity and diffusion of catechin and epicatechin from antioxidant active films made of poly(L-lactic acid) . J. Agric. Food Chem. 2012 , 60 , 6515 ? 6523 . 10.1021/jf300668u . 22681400 

  59. Soto-Valdez H. ; Auras R. ; Peralta E. Fabrication of poly(lactic acid) films with resveratrol and the diffusion of resveratrol into ethanol . J. Appl. Polym. Sci. 2011 , 121 , 970 ? 978 . 10.1002/app.33687 . 

  60. Battegazzore D. ; Bocchini S. ; Alongi J. ; Frache A. ; Marino F. Cellulose extracted from rice husk as filler for poly(lactic acid): preparation and characterization . Cellulose 2014 , 21 , 1813 ? 1821 . 10.1007/s10570-014-0207-5 . 

  61. Avolio R. ; Castaldo R. ; Gentile G. ; Ambrogi V. ; Fiori S. ; Avella M. ; Cocca M. ; Errico M. E. Plasticization of poly(lactic acid) through blending with oligomers of lactic acid: effect of the physical aging on properties . Eur. Polym. J. 2015 , 66 , 533 ? 542 . 10.1016/j.eurpolymj.2015.02.040 . 

  62. Fukushima K. ; Fina A. ; Geobaldo F. ; Venturello A. ; Camino G. Properties of poly(lactic acid) nanocomposites based on montmorillonite, sepiolite and zirconium phosphonate . eXPRESS Polym. Lett. 2012 , 6 , 914 ? 926 . 10.3144/expresspolymlett.2012.97 . 

  63. Hamad K. ; Kaseem M. ; Yang H. W. ; Deri F. ; Ko Y. G. Properties and medical applications of polylactic acid: a review . eXPRESS Polym. Lett. 2015 , 9 , 435 ? 455 . 10.3144/expresspolymlett.2015.42 . 

  64. Gurunathan T. ; Mohanty S. ; Nayak S. K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives . Composites, Part A 2015 , 77 , 1 ? 25 . 10.1016/j.compositesa.2015.06.007 . 

  65. Loizzo M. R. ; Tundis R. ; Menichini F. Natural and synthetic tyrosinase inhibitors as antibrowning agents: an update . Compr. Rev. Food Sci. Food Saf. 2012 , 11 , 378 ? 339 . 10.1111/j.1541-4337.2012.00191.x . 

  66. Panzella L. ; Napolitano A. Natural and bioinspired phenolic compounds as tyrosinase inhibitors for the treatment of skin hyperpigmentation: recent advances . Cosmetics 2019 , 6 , 57 10.3390/cosmetics6040057 . 

  67. Ribeiro H. M. ; Allegro M. ; Marto J. ; Pedras B. ; Oliveira N. G. ; Paiva A. ; Barreiros S. ; Goncalves L. M. ; Simoes P. Converting spent coffee grounds into bioactive extracts with potential skin antiaging and lightening effects . ACS Sustainable Chem. Eng. 2018 , 6 , 6289 ? 6295 . 10.1021/acssuschemeng.8b00108 . 

  68. Chai W. M. ; Wei Q. M. ; Deng W. L. ; Zheng Y. L. ; Chen X. Y. ; Huang Q. ; Chong O. Y. ; Peng Y. Y. Anti-melanogenesis properties of condensed tannins from Vigna angularis seeds with potent antioxidant and DNA damage protection activities . Food Funct. 2019 , 10 , 99 ? 111 . 10.1039/C8FO01979G . 30565612 

  69. Chai W. M. ; Lin M. Z. ; Wang Y. X. ; Xu K. L. ; Huang W. Y. ; Pan D. D. ; Zou Z. R. ; Peng Y. Y. Inhibition of tyrosinase by cherimoya pericarp proanthocyanidins: structural characterization, inhibitory activity and mechanism . Food Res. Int. 2017 , 100 , 731 ? 739 . 10.1016/j.foodres.2017.07.082 . 28873743 

  70. Deng Y. T. ; Liang G. ; Shi Y. ; Li H. L. ; Zhang J. ; Mao X. M. ; Fu Q. R. ; Peng W. X. ; Chen Q. X. ; Shen D. Y. Condensed tannins from Ficus altissima leaves: structural, antioxidant, and antityrosinase properties . Process Biochem. 2016 , 51 , 1092 ? 1099 . 10.1016/j.procbio.2016.04.022 . 

  71. Chai W. M. ; Huang Q. ; Lin M. Z. ; Chong O. Y. ; Huang W. Y. ; Wang Y. X. ; Xu K. L. ; Feng H. L. Condensed tannins from Longan bark as inhibitor of tyrosinase: structure, activity, and mechanism . J. Agric. Food Chem. 2018 , 66 , 908 ? 917 . 10.1021/acs.jafc.7b05481 . 29313327 

  72. Lu S. ; Luo Y. ; Turner E. ; Feng H. Efficacy of sodium chlorite as an inhibitor of enzymatic browning in apple slices . Food Chem. 2007 , 104 , 824 ? 829 . 10.1016/j.foodchem.2006.12.050 . 

  73. Ros J. R. ; Rodriguez-Lopez J. N. ; Garcia-Canovas F. Effect of l-ascorbic acid on the monophenolase activity of tyrosinase . Biochem. J. 1993 , 295 ( Pt 1 ), 309 ? 312 . 10.1042/bj2950309 . 8216233 

  74. Krga I. ; Milenkovic D. Anthocyanins: from sources and bioavailability to cardiovascular-health benefits and molecular mechanisms of action . J. Agric. Food Chem. 2019 , 67 , 1771 ? 1783 . 10.1021/acs.jafc.8b06737 . 30698008 

  75. Schweiggert R. M. Perspective on the ongoing replacement of artificial and animal-based dyes with alternative natural pigments in foods and beverages . J. Agric. Food Chem. 2018 , 66 , 3074 ? 3081 . 10.1021/acs.jafc.7b05930 . 29553257 

  76. Stintzing F. C. ; Carle R. Functional properties of anthocyanins and betalains in plants, food, and in human nutrition . Trends Food Sci. Technol. 2004 , 15 , 19 ? 38 . 10.1016/j.tifs.2003.07.004 . 

  77. Patras A. ; Brunton N. P. ; O’Donnell C. ; Tiwari B. K. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation . Trends Food Sci. Technol. 2010 , 21 , 3 ? 11 . 10.1016/j.tifs.2009.07.004 . 

  78. Ngamwonglumlert L. ; Devahastin S. ; Chiewchan N. Natural colorants: pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods . Crit. Rev. Food Sci. Nutr. 2017 , 57 , 3243 ? 3259 . 10.1080/10408398.2015.1109498 . 26517806 

  79. Silva V. O. ; Freitas A. A. ; Macanita A. L. ; Quina F. H. Chemistry and photochemistry of natural plant pigments: the anthocyanins . J. Phys. Org. Chem. 2016 , 29 , 594 ? 599 . 10.1002/poc.3534 . 

  80. Cortez R. ; Luna-Vital D. A. ; Margulis D. ; Gonzalez de Mejia E. Natural pigments: stabilization methods of anthocyanins for food applications . Compr. Rev. Food Sci. Food Saf. 2017 , 16 , 180 ? 198 . 10.1111/1541-4337.12244 . 33371542 

  81. He Y. ; Wen L. ; Yu H. ; Zheng F. ; Wang Z. ; Xu X. ; Zhang H. ; Cao Y. ; Wang B. ; Chu B. ; Hao J. Effects of high hydrostatic pressure-assisted organic acids on the copigmentation of Vitis amurensis Rupr anthocyanins . Food Chem. 2018 , 268 , 15 ? 26 . 10.1016/j.foodchem.2018.06.052 . 30064742 

  82. Ratanapoompinyo J. ; Nguyen L. T. ; Devkota L. ; Shrestha P. The effects of selected metal ions on the stability of red cabbage anthocyanins and total phenolic compounds subjected to encapsulation process . J. Food Process. Preserv. 2017 , 41 , e13234 10.1111/jfpp.13234 . 

  83. Chung C. ; Rojanasasithara T. ; Mutilangi W. ; McClements D. J. Stability improvement of natural food colors: impact of amino acid and peptide addition on anthocyanin stability in model beverages . Food Chem. 2017 , 218 , 277 ? 284 . 10.1016/j.foodchem.2016.09.087 . 27719910 

  84. Trouillas P. ; Sancho-Garcia J. C. ; De Freitas V. ; Gierschner J. ; Otyepka M. ; Dangles O. Stabilizing and modulating color by copigmentation: insights from theory and experiment . Chem. Rev. 2016 , 116 , 4937 ? 4982 . 10.1021/acs.chemrev.5b00507 . 26959943 

  85. Boulton R. The copigmentation of anthocyanins and its role in the color of red wine: a critical review . Am. J. Enol. Viticult. 2001 , 52 , 67 ? 87 . 

  86. Pacheco-Palencia L. A. ; Talcott S. Y. Chemical stability of acai fruit ( Euterpe oleracea Mart.) anthocyanins as influenced by naturally occurring and externally added polyphenolic cofactors in model systems . Food Chem. 2010 , 118 , 17 ? 25 . 10.1016/j.foodchem.2009.02.032 . 

  87. Shikov V. ; Kammerer D. R. ; Mihalev K. ; Mollov P. ; Carle R. Heat stability of strawberry anthocyanins in model solutions containing natural copigments extracted from rose ( Rosa damascena Mill.) petals . J. Agric. Food Chem. 2008 , 56 , 8521 ? 8526 . 10.1021/jf801946g . 18729376 

  88. Fan L. ; Wang Y. ; Xie P. ; Zhang L. ; Li Y. ; Zhou J. Copigmentation effects of phenolics on color enhancement and stability of blackberry wine residue anthocyanins: chromaticity, kinetics and structural simulation . Food Chem. 2019 , 275 , 299 ? 308 . 10.1016/j.foodchem.2018.09.103 . 30724200 

  89. Gras C. C. ; Bause K. ; Leptihn S. ; Carle R. ; Schweiggert R. M. Effect of chlorogenic acid on spectral properties and stability of acylated and non-acylated cyanidin-3-O-glycosides . Food Chem. 2018 , 240 , 940 ? 950 . 10.1016/j.foodchem.2017.07.137 . 28946365 

  90. Robert P. ; Fredes C. The encapsulation of anthocyanins from berry-type fruits. Trends in foods . Molecules 2015 , 20 , 5875 ? 5888 . 10.3390/molecules20045875 . 25854753 

  91. Fan-Chiang H.-J. ; Wrolstad R. E. Anthocyanin pigment composition of blackberries . J. Food Sci. 2005 , 70 , C198 ? C202 . 10.1111/j.1365-2621.2005.tb07125.x . 

  92. Slimestad R. ; Solheim H. Anthocyanins from black currants ( Ribes nigrum L.) . J. Agric. Food Chem. 2002 , 50 , 3228 ? 3231 . 10.1021/jf011581u . 12009991 

  93. Sinela A. ; Rawat N. ; Mertz C. ; Achir N. ; Fulcrand H. ; Dornier M. Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products . Food Chem. 2017 , 214 , 234 ? 241 . 10.1016/j.foodchem.2016.07.071 . 27507471 

  94. Brauch J. E. ; Kroner M. ; Schweiggert R. M. ; Carle R. Studies into the stability of 3-O-glycosylated and 3,5-O-diglycosylated anthocyanins in differently purified liquid and dried maqui ( Aristotelia chilensis (Mol.) Stuntz) preparations during storage and thermal treatment . J. Agric. Food Chem. 2015 , 63 , 8705 ? 8714 . 10.1021/acs.jafc.5b03471 . 26338479 

  95. Anastas P. T. ; Warner J. C. Green Chemistry: Theory and Practice ; Oxford University Press : New York , 1998 . 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로