$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Stress-related topology optimization of shell structures using IGA/TSA-based Moving Morphable Void (MMV) approach

Computer methods in applied mechanics and engineering, v.366, 2020년, pp.113036 -   

Zhang, Weisheng (State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology) ,  Jiang, Shan (State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology) ,  Liu, Chang (State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology) ,  Li, Dingding (State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology) ,  Kang, Pilseong (Center for Space Optics, Korea Research Institute of Standards and Science Repu) ,  Youn, Sung-Kie ,  Guo, Xu

Abstract AI-Helper 아이콘AI-Helper

Abstract There have been quite a few research works on the topology optimization under stress constraints. However, most of them only treated two dimensional (2D) cases. In the present work, a new approach for topology optimization of three dimensional (3D) shell structures under stress constraints...

Keyword

참고문헌 (45)

  1. Comput. Methods Appl. Mech. Engrg. Bendsœ 71 197 1988 10.1016/0045-7825(88)90086-2 Generating optimal topologies in structural design using a homogenization method 

  2. Acta Mech. Sin. Guo 26 807 2010 10.1007/s10409-010-0395-7 Recent development in structural design and optimization 

  3. Struct. Multidiscip. Optim. Sigmund 48 1031 2013 10.1007/s00158-013-0978-6 Topology optimization approaches: A comparative review 

  4. Struct. Multidiscip. Optim. Deaton 49 1 2014 10.1007/s00158-013-0956-z A survey of structural and multidisciplinary continuum topology optimization: post 2000 

  5. Bendsœ 2003 Topology Optimization: Theory, Methods, and Applications 

  6. Internat. J. Numer. Methods Engrg. Duysinx 43 1453 1998 10.1002/(SICI)1097-0207(19981230)43:8<1453::AID-NME480>3.0.CO;2-2 Topology optimization of continuum structures with local stress constraints 

  7. Struct. Optim. Cheng 13 258 1997 10.1007/BF01197454 ε-Relaxed approach in structural topology optimization 

  8. Struct. Multidiscip. Optim. Bruggi 36 125 2008 10.1007/s00158-007-0203-6 On an alternative approach to stress constraints relaxation in topology optimization 

  9. Internat. J. Numer. Methods Engrg. Bruggi 73 1693 2008 10.1002/nme.2138 A mixed FEM approach to stress-constrained topology optimization 

  10. Struct. Multidiscip. Optim. Le 41 605 2010 10.1007/s00158-009-0440-y Stress-based topology optimization for continua 

  11. Adv. Eng. Softw. Paris 41 433 2010 10.1016/j.advengsoft.2009.03.006 Block aggregation of stress constraints in topology optimization of structures 

  12. Struct. Multidiscip. Optim. Holmberg 48 33 2013 10.1007/s00158-012-0880-7 Stress constrained topology optimization 

  13. Compos. Struct. Kiyono 156 10 2016 10.1016/j.compstruct.2016.05.058 A new multi-p-norm formulation approach for stress-based topology optimization design 

  14. Comput. Struct. Yang 198 23 2018 10.1016/j.compstruc.2018.01.008 Stress-constrained topology optimization based on maximum stress measures 

  15. Struct. Multidiscip. Optim. Van Miegroet 33 425 2007 10.1007/s00158-006-0091-1 Stress concentration minimization of 2D filets using X-FEM and level set description 

  16. Eng. Anal. Bound. Elem. Allaire 32 909 2008 10.1016/j.enganabound.2007.05.007 Minimum stress optimal design with the level set method 

  17. Comput. Methods Appl. Mech. Engrg. Guo 200 3439 2012 10.1016/j.cma.2011.08.016 Stress-related topology optimization via level set approach 

  18. Internat. J. Numer. Methods Engrg. Zhang 93 942 2013 10.1002/nme.4416 Optimal topology design of continuum structures with stress concentration alleviation via level set method 

  19. Comput. Methods Appl. Mech. Engrg. Guo 268 632 2014 10.1016/j.cma.2013.10.003 Stress-related topology optimization of continuum structures involving multi-phase materials 

  20. Struct. Multidiscip. Optim. Wang 47 335 2013 10.1007/s00158-012-0846-9 Shape equilibrium constraint: a strategy for stress-constrained structural topology optimization 

  21. Comput. Struct. Xia 90-91 55 2012 10.1016/j.compstruc.2011.10.009 A level set solution to the stress-based structural shape and topology optimization 

  22. Struct. Multidiscip. Optim. Sharma 57 17 2018 10.1007/s00158-017-1833-y Stress-based topology optimization using spatial gradient stabilized XFEM 

  23. Struct. Multidiscip. Optim. Amstutz 41 407 2010 10.1007/s00158-009-0425-x Topological optimization of structures subject to von mises stress constraints 

  24. Struct. Multidiscip. Optim. Suresh 48 295 2013 10.1007/s00158-013-0899-4 Stress-constrained topology optimization: a topological level-set approach 

  25. Comput. Methods Appl. Mech. Engrg. Cai 278 361 2014 10.1016/j.cma.2014.06.007 Stress constrained shape and topology optimization with fixed mesh: a b-spline finite cell method combined with level set function 

  26. Comput. Methods Appl. Mech. Engrg. Zhang 334 381 2018 10.1016/j.cma.2018.01.050 A Moving Morphable Void (MMV)-based explicit approach for topology optimization considering stress constraints 

  27. J. Appl. Mech. Guo 81 081009 2014 10.1115/1.4027609 Doing topology optimization explicitly and geometrically-A new moving morphable components based framework 

  28. ASME J. Appl. Mech. Zhang 84 011011 2017 10.1115/1.4034972 Structural topology optimization through explicit boundary evolution 

  29. Comput. Methods Appl. Mech. Engrg. Zhang 322 590 2017 10.1016/j.cma.2017.05.002 Explicit three dimensional topology optimization via moving morphable void (MMV) approach 

  30. Comput. Mech. Zhang 59 647 2017 10.1007/s00466-016-1365-0 A new three-dimensional topology optimization method based on moving morphable components (MMCs) 

  31. Comput. Methods Appl. Mech. Engrg. Norato 293 306 2015 10.1016/j.cma.2015.05.005 A geometry projection method for continuum-based topology optimization with discrete elements 

  32. Internat. J. Numer. Methods Engrg. Zhang 114 128 2018 10.1002/nme.5737 A geometry projection method for the topology optimization of curved plate structures with placement bounds 

  33. Arch. Comput. Methods Eng. Dede 19 427 2012 10.1007/s11831-012-9075-z Isogeometric analysis for topology optimization with a phase field model 

  34. Comput. Methods Appl. Mech. Engrg. Kim 199 1796 2010 10.1016/j.cma.2010.04.015 Isogeometric analysis with trimming technique for problems of arbitrary complex topology 

  35. Finite Elem. Anal. Des. Kang 99 68 2015 10.1016/j.finel.2015.02.002 Isogeometric analysis of topologically complex shell structures 

  36. Struct. Multidiscip. Optim. Kang 53 825 2016 10.1007/s00158-015-1361-6 Isogeometric shape optimization of trimmed shell structures 

  37. Finite Elem. Anal. Des. Kang 120 18 2016 10.1016/j.finel.2016.06.003 Isogeometric topology optimization of shell structures using trimmed NURBS surfaces 

  38. Comput. Methods Appl. Mech. Engrg. Zhang 380 2020 Explicit topology optimization using IGA-based moving morphable void (MMV) approach 

  39. Internat. J. Numer. Methods Engrg. Zhang 84 485 2010 10.1002/nme.2919 A parametric mapping method for curve shape optimization on 3D panel structures 

  40. Finite Elem. Anal. Des. Wang 120 80 2016 10.1016/j.finel.2016.07.002 A moving bounds strategy for the parameterization of geometric design variables in the simultaneous shape optimization of curved shell structures and openings 

  41. Struct. Multidiscip. Optim. Gai 61 963 2020 10.1007/s00158-019-02398-1 Explicit isogeometric topology optimization based on moving morphable voids with closed B-spline boundary curves 

  42. Comput. Aided Des. Wei 42 708 2018 10.1016/j.cad.2009.12.001 A study on X-FEM in continuum structural optimization using a level set model 

  43. Internat. J. Numer. Methods Engrg. Svanberg 24 359 1987 10.1002/nme.1620240207 The method of moving asymptotes-a new method for structural optimization 

  44. ANSYS® Academic Research Mechanical, Release 15.0. 

  45. Comput. Methods Appl. Mech. Engrg. Xie 360 2020 10.1016/j.cma.2019.112696 A hierarchical spline based isogeometric topology optimization using moving morphable components 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로