최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Computer methods in applied mechanics and engineering, v.366, 2020년, pp.113036 -
Zhang, Weisheng (State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology) , Jiang, Shan (State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology) , Liu, Chang (State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology) , Li, Dingding (State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology) , Kang, Pilseong (Center for Space Optics, Korea Research Institute of Standards and Science Repu) , Youn, Sung-Kie , Guo, Xu
Abstract There have been quite a few research works on the topology optimization under stress constraints. However, most of them only treated two dimensional (2D) cases. In the present work, a new approach for topology optimization of three dimensional (3D) shell structures under stress constraints...
Comput. Methods Appl. Mech. Engrg. Bendsœ 71 197 1988 10.1016/0045-7825(88)90086-2 Generating optimal topologies in structural design using a homogenization method
Acta Mech. Sin. Guo 26 807 2010 10.1007/s10409-010-0395-7 Recent development in structural design and optimization
Struct. Multidiscip. Optim. Sigmund 48 1031 2013 10.1007/s00158-013-0978-6 Topology optimization approaches: A comparative review
Struct. Multidiscip. Optim. Deaton 49 1 2014 10.1007/s00158-013-0956-z A survey of structural and multidisciplinary continuum topology optimization: post 2000
Bendsœ 2003 Topology Optimization: Theory, Methods, and Applications
Internat. J. Numer. Methods Engrg. Duysinx 43 1453 1998 10.1002/(SICI)1097-0207(19981230)43:8<1453::AID-NME480>3.0.CO;2-2 Topology optimization of continuum structures with local stress constraints
Struct. Optim. Cheng 13 258 1997 10.1007/BF01197454 ε-Relaxed approach in structural topology optimization
Struct. Multidiscip. Optim. Bruggi 36 125 2008 10.1007/s00158-007-0203-6 On an alternative approach to stress constraints relaxation in topology optimization
Internat. J. Numer. Methods Engrg. Bruggi 73 1693 2008 10.1002/nme.2138 A mixed FEM approach to stress-constrained topology optimization
Struct. Multidiscip. Optim. Le 41 605 2010 10.1007/s00158-009-0440-y Stress-based topology optimization for continua
Adv. Eng. Softw. Paris 41 433 2010 10.1016/j.advengsoft.2009.03.006 Block aggregation of stress constraints in topology optimization of structures
Struct. Multidiscip. Optim. Holmberg 48 33 2013 10.1007/s00158-012-0880-7 Stress constrained topology optimization
Compos. Struct. Kiyono 156 10 2016 10.1016/j.compstruct.2016.05.058 A new multi-p-norm formulation approach for stress-based topology optimization design
Comput. Struct. Yang 198 23 2018 10.1016/j.compstruc.2018.01.008 Stress-constrained topology optimization based on maximum stress measures
Struct. Multidiscip. Optim. Van Miegroet 33 425 2007 10.1007/s00158-006-0091-1 Stress concentration minimization of 2D filets using X-FEM and level set description
Eng. Anal. Bound. Elem. Allaire 32 909 2008 10.1016/j.enganabound.2007.05.007 Minimum stress optimal design with the level set method
Comput. Methods Appl. Mech. Engrg. Guo 200 3439 2012 10.1016/j.cma.2011.08.016 Stress-related topology optimization via level set approach
Internat. J. Numer. Methods Engrg. Zhang 93 942 2013 10.1002/nme.4416 Optimal topology design of continuum structures with stress concentration alleviation via level set method
Comput. Methods Appl. Mech. Engrg. Guo 268 632 2014 10.1016/j.cma.2013.10.003 Stress-related topology optimization of continuum structures involving multi-phase materials
Struct. Multidiscip. Optim. Wang 47 335 2013 10.1007/s00158-012-0846-9 Shape equilibrium constraint: a strategy for stress-constrained structural topology optimization
Comput. Struct. Xia 90-91 55 2012 10.1016/j.compstruc.2011.10.009 A level set solution to the stress-based structural shape and topology optimization
Struct. Multidiscip. Optim. Sharma 57 17 2018 10.1007/s00158-017-1833-y Stress-based topology optimization using spatial gradient stabilized XFEM
Struct. Multidiscip. Optim. Amstutz 41 407 2010 10.1007/s00158-009-0425-x Topological optimization of structures subject to von mises stress constraints
Struct. Multidiscip. Optim. Suresh 48 295 2013 10.1007/s00158-013-0899-4 Stress-constrained topology optimization: a topological level-set approach
Comput. Methods Appl. Mech. Engrg. Cai 278 361 2014 10.1016/j.cma.2014.06.007 Stress constrained shape and topology optimization with fixed mesh: a b-spline finite cell method combined with level set function
Comput. Methods Appl. Mech. Engrg. Zhang 334 381 2018 10.1016/j.cma.2018.01.050 A Moving Morphable Void (MMV)-based explicit approach for topology optimization considering stress constraints
J. Appl. Mech. Guo 81 081009 2014 10.1115/1.4027609 Doing topology optimization explicitly and geometrically-A new moving morphable components based framework
ASME J. Appl. Mech. Zhang 84 011011 2017 10.1115/1.4034972 Structural topology optimization through explicit boundary evolution
Comput. Methods Appl. Mech. Engrg. Zhang 322 590 2017 10.1016/j.cma.2017.05.002 Explicit three dimensional topology optimization via moving morphable void (MMV) approach
Comput. Mech. Zhang 59 647 2017 10.1007/s00466-016-1365-0 A new three-dimensional topology optimization method based on moving morphable components (MMCs)
Comput. Methods Appl. Mech. Engrg. Norato 293 306 2015 10.1016/j.cma.2015.05.005 A geometry projection method for continuum-based topology optimization with discrete elements
Internat. J. Numer. Methods Engrg. Zhang 114 128 2018 10.1002/nme.5737 A geometry projection method for the topology optimization of curved plate structures with placement bounds
Arch. Comput. Methods Eng. Dede 19 427 2012 10.1007/s11831-012-9075-z Isogeometric analysis for topology optimization with a phase field model
Comput. Methods Appl. Mech. Engrg. Kim 199 1796 2010 10.1016/j.cma.2010.04.015 Isogeometric analysis with trimming technique for problems of arbitrary complex topology
Finite Elem. Anal. Des. Kang 99 68 2015 10.1016/j.finel.2015.02.002 Isogeometric analysis of topologically complex shell structures
Struct. Multidiscip. Optim. Kang 53 825 2016 10.1007/s00158-015-1361-6 Isogeometric shape optimization of trimmed shell structures
Finite Elem. Anal. Des. Kang 120 18 2016 10.1016/j.finel.2016.06.003 Isogeometric topology optimization of shell structures using trimmed NURBS surfaces
Comput. Methods Appl. Mech. Engrg. Zhang 380 2020 Explicit topology optimization using IGA-based moving morphable void (MMV) approach
Internat. J. Numer. Methods Engrg. Zhang 84 485 2010 10.1002/nme.2919 A parametric mapping method for curve shape optimization on 3D panel structures
Finite Elem. Anal. Des. Wang 120 80 2016 10.1016/j.finel.2016.07.002 A moving bounds strategy for the parameterization of geometric design variables in the simultaneous shape optimization of curved shell structures and openings
Struct. Multidiscip. Optim. Gai 61 963 2020 10.1007/s00158-019-02398-1 Explicit isogeometric topology optimization based on moving morphable voids with closed B-spline boundary curves
Comput. Aided Des. Wei 42 708 2018 10.1016/j.cad.2009.12.001 A study on X-FEM in continuum structural optimization using a level set model
Internat. J. Numer. Methods Engrg. Svanberg 24 359 1987 10.1002/nme.1620240207 The method of moving asymptotes-a new method for structural optimization
ANSYS® Academic Research Mechanical, Release 15.0.
Comput. Methods Appl. Mech. Engrg. Xie 360 2020 10.1016/j.cma.2019.112696 A hierarchical spline based isogeometric topology optimization using moving morphable components
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.