$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Distinct shear-induced Ca2+ signaling in the left and right atrial myocytes: Role of P2 receptor context

Journal of molecular and cellular cardiology, v.143, 2020년, pp.38 - 50  

Le, Qui Anh (College of Pharmacy, Chungnam National University) ,  Kim, Joon-Chul ,  Kim, Kyeong-Hee ,  Van Vu, Anh Thi ,  Woo, Sun-Hee

Abstract AI-Helper 아이콘AI-Helper

Abstract Atrial myocytes are continuously exposed to shear stress during cardiac cycles. Previous reports have shown that shear stress induces two different types of global Ca2+ signaling in atrial myocytes–longitudinal Ca2+ waves (L-waves) and action potential-involved transverse waves (T-wa...

Keyword

참고문헌 (61)

  1. Physiol. Rev. Lakatta 73 413 1993 10.1152/physrev.1993.73.2.413 Cardiovascular regulatory mechanisms in advanced age 

  2. Cardiovasc. Res. Nazir 32 52 1996 10.1016/S0008-6363(96)00054-5 Mechanoelectric feedback and atrial arrhythmias 

  3. Circ. Res. LeGrice 77 182 1995 10.1161/01.RES.77.1.182 Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening 

  4. Am. J. Phys. Costa 276 H595 1999 Laminar fiber architecture and three-dimensional systolic mechanics in canine ventricular myocardium 

  5. Cell Biochem. Biophys. Lorenzen-Schmidt 46 113 2006 10.1385/CBB:46:2:113 Chronotropic response of cultured neonatal rat ventricular myocytes to short-term fluid shear 

  6. Sci. Rep. Gulan 9 100 2019 10.1038/s41598-018-36614-7 Hemodynamic changes in the right ventricle induced by variations of cardiac output: A possible mechanism for arrhythmia occurrence in the outflow tract 

  7. Crit. Care Nurs. Clin. North Am. Paul 15 407 2003 10.1016/S0899-5885(02)00089-8 Ventricular remodeling 

  8. Am. Heart J. Goldsmith 140 777 2000 10.1067/mhj.2000.110284 Atrial endocardial changes in mitral valve disease: A scanning electron microscopy study 

  9. Saffitz 232 2009 Essentials of Rubin’s Pathology Acquired valvular and endocardial diseases 

  10. Arch. Biochem. Biophys. Kim 659 33 2018 10.1016/j.abb.2018.09.026 Regulation of cardiac calcium by mechanotransduction: Role of mitochondria 

  11. Cell Calcium Woo 41 397 2007 10.1016/j.ceca.2006.09.005 Modulation of local Ca2+ release sites by rapid fluid puffing in rat atrial myocytes 

  12. Biochim. Biophys. Acta Mol. Cell Res. Kim 2017 1121 1864 Shear stress enhances Ca2+ sparks through Nox2-dependent mitochondrial reactive oxygen species generation in rat ventricular myocytes 

  13. J. Physiol. Kim 593 5091 2015 10.1113/JP271016 Shear stress induces a longitudinal Ca2+ wave via autocrine activation of P2Y1 purinergic signalling in rat atrial myocytes 

  14. Cell. Physiol. Biochem. Kim 50 2296 2018 10.1159/000495089 Ca2+ signaling triggered by shear-autocrine P2X receptor pathway in rat atrial myocytes 

  15. J. Cell Biol. Carl 129 673 1995 10.1083/jcb.129.3.673 Immunolocalization of sarcolemmaldihydropyridine receptor and sarcoplasmic reticular triadin and ryanodine receptor in rabbit ventricle and atrium 

  16. J. Anat. Ayettey 127 125 1978 The T-tubule system in the specialized and general myocardium of the rat 

  17. Trends Neurosci. Allen 20 192 1997 10.1016/S0166-2236(96)01039-9 The ‘sniffer-patch’ technique for detection of neurotransmitter release 

  18. J. Physiol. Woo 543 439 2002 10.1113/jphysiol.2002.024190 Ca2+ current-gated focal and local Ca2+ release in rat atrial myocytes: Evidence from rapid 2-D confocal imaging 

  19. Biochem. J. Kunapuli 336 Pt 3 513 1998 10.1042/bj3360513 P2 receptor subtypes in the cardiovascular system 

  20. Physiol. Rev. North 82 1013 2002 10.1152/physrev.00015.2002 Molecular physiology of P2X receptors 

  21. J. Physiol. Sartiani 545 81 2002 10.1113/jphysiol.2002.021535 Functional expression of the hyperpolarization-activated non-selective cation current if in immortalized Hl-1 cardiomyocytes 

  22. Am. J. Physiol. Heart Circ. Physiol. White 286 H823 2004 10.1152/ajpheart.00986.2003 Cardiac physiology at the cellular level: Use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function 

  23. Prog. Biophys. Mol. Biol. Kim 103 59 2010 10.1016/j.pbiomolbio.2010.02.002 Atrial local Ca2+ signaling and inositol 1,4,5-trisphosphate receptors 

  24. Biochem. Biophys. Acta Solan 1711 154 2005 10.1016/j.bbamem.2004.09.013 Connexin phosphorylation as a regulatory event linked to gap junction channel assembly 

  25. Cardiovasc. Res. Severs 80 9 2008 10.1093/cvr/cvn133 Remodelling of gap junctions and connexin expression in diseased myocardium 

  26. Cell Biol. Int. Oviedo-Orta 26 253 2002 10.1006/cbir.2001.0840 Gap junction intercellular communication during lymphocyte transendothelial migration 

  27. Basic Res. Cardiol. Wang 108 309 2013 10.1007/s00395-012-0309-x Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury 

  28. Front. Cell. Neurosci. Abudara 8 306 2014 10.3389/fncel.2014.00306 The connexin43 mimetic peptide Gap19 inhibits hemichannels without altering gap junction communication in astrocytes 

  29. Anal. Biochem. Carrigan 341 290 2005 10.1016/j.ab.2005.03.026 The engineering of membrane-permeable peptides 

  30. J. Cell Biol. Lampe 126 1503 2000 10.1083/jcb.149.7.1503 Phosphorylation of connexin43 on serine368 by protein kinase C regulates gap junctional communication 

  31. Biochim. Biophys. Acta Marquez-Rosado 1818 1985 2012 10.1016/j.bbamem.2011.07.028 Connexin43 phosphorylation in brain, cardiac, endothelial and epithelial tissues 

  32. Circ. Res. Jain 92 1138 2003 10.1161/01.RES.0000074883.66422.C5 Mechanisms of delayed electrical uncoupling induced by ischemic preconditioning 

  33. J. Med. Chem. Hernandez-Olmos 55 9576 2012 10.1021/jm300845v N-substituted phenoxazine and acridone derivatives: Structure-activity relationships of potent P2X4 receptor antagonists 

  34. Cell. Physiol. Biochem. Balazs 32 11 2013 10.1159/000350119 Investigation of the inhibitory effects of the benzodiazepine derivative, 5-BDBD on P2X4 purinergic receptors by two complementary methods 

  35. Front. Pharmacol. Stokes 8 291 2017 10.3389/fphar.2017.00291 P2X4 receptor function in the nervous system and current breakthroughs in pharmacology 

  36. Annu. Rev. Physiol. Schmid 81 43 2019 10.1146/annurev-physiol-020518-114259 ATP-gated P2X receptor channels: Molecular insights into functional roles 

  37. J. Physiol. Belmonte 586 1379 2008 10.1113/jphysiol.2007.149294 ‘Pressure-flow’-triggered intracellular Ca2+ transients in rat cardiac myocytes: Possible mechanisms and role of mitochondria 

  38. Biochem. J. Solan 419 261 2009 10.1042/BJ20082319 Connexin 43 phosphorylation-structural changes and biological effects 

  39. Mol. Biol. Cell Rhett 22 1516 2011 10.1091/mbc.e10-06-0548 Connexin 43 connexon to gap junction transition is regulated by zonula occludens-1 

  40. Mol. Pharmacol. Waldo 65 426 2004 10.1124/mol.65.2.426 Agonist binding and Gq-stimulating activities of the purified human P2Y1 receptor 

  41. Purinergic Signal Erlinge 4 1 2008 10.1007/s11302-007-9078-7 P2 receptors in cardiovascular regulation and disease 

  42. Biom. J. Suurvali 40 245 2017 P2X4: A fast and sensitive purinergic receptor 

  43. Pharmacol. Ther. von Kugelgen 110 415 2006 10.1016/j.pharmthera.2005.08.014 Pharmacological profile of cloned mammalian P2Y-receptor subtypes 

  44. J. Biol. Chem. Joseph 278 23331 2003 10.1074/jbc.M302680200 Colocalization of ATP release sites and ecto-ATPase activity at the extracellular surface of human astrocytes 

  45. Pharmacol. Rev. Ralevic 50 413 1998 Receptors for purines and pyrimidines 

  46. J. Pharmacol. Exp. Ther. Kaiser 350 531 2014 10.1124/jpet.114.214569 A sulfonate, but not tanshinone II A, acts as potent negative allosteric modulator of the human purinergic receptor P2X7 

  47. FEBS Lett. Locovei 580 239 2006 10.1016/j.febslet.2005.12.004 Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium 

  48. Proc. Natl. Acad. Sci. U. S. A. Boycott 110 E3955 2013 10.1073/pnas.1309896110 Shear stress triggers insertion of voltage-gated potassium channels from intracellular compartments in atrial myocytes 

  49. Cardiovasc. Res. Rucker-Martin 72 69 2006 10.1016/j.cardiores.2006.06.016 Chronic hemodynamic overload of the atria is an important factor for gap junction remodeling in human and rat hearts 

  50. Exp. Cell Res. Goldberg 239 82 1998 10.1006/excr.1997.3872 Direct isolation and analysis of endogenous transjunctional ADP from Cx43 transfected C6 glioma cells 

  51. Nat. Cell Biol. Goldberg 1 457 1999 10.1038/15693 Selective transfer of endogenous metabolites through gap junctions composed of different connexins 

  52. Proc. Natl. Acad. Sci. U. S. A. Batra 109 3359 2012 10.1073/pnas.1115967109 Mechanical stress-activated integrin α5β1 induces opening of connexin 43 hemichannels 

  53. Cardiovasc. Res. Meens 99 304 2013 10.1093/cvr/cvt095 Regulation of cardiovascular connexins by mechanical forces and junctions 

  54. Biophys. J. Helmke 84 2691 2003 10.1016/S0006-3495(03)75074-7 Mapping mechanical strain of an endogenous cytoskeletal network in living endothelial cells 

  55. Am. J. Phys. Bao 287 C1389 2004 10.1152/ajpcell.00220.2004 Connexins are mechanosensitive 

  56. Proc. Natl. Acad. Sci. U. S. A. Contreras 100 11388 2003 10.1073/pnas.1434298100 Gating and regulation of connexin 43 (Cx43) hemichannels 

  57. Eur. J. Cell Biol. Verma 88 79 2009 10.1016/j.ejcb.2008.08.005 Perturbing plasma membrane hemichannels attenuates calcium signalling in cardiac cells and HeLa cells expressing connexins 

  58. FASEB J. Hu 15 2739 2001 10.1096/fj.01-0445fje A novel contractile phenotype with cardiac transgenic expression of the human P2X4 receptor 

  59. Am. J. Physiol. Heart Circ. Physiol. Gregs 294 H1716 2008 10.1152/ajpheart.00945.2007 A positive inotropic effect of ATP in the human cardiac atrium 

  60. Circul. Cardiovasc. Imaging Dodson 7 586 2014 10.1161/CIRCIMAGING.113.001472 Left atrial passive emptying function determined by cardiac magnetic resonance predicts atrial fibrillation recurrence after pulmonary vein isolation 

  61. Am. J. Cardiol. Maron 113 1394 2014 10.1016/j.amjcard.2013.12.045 Left atrial remodeling in hypertrophic cardiomyopathy and susceptibility markers for atrial fibrillation identified by cardiovascular magnetic resonance 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로