$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Coupled health monitoring system for CNT-doped self-sensing composites

Carbon, v.166, 2020년, pp.193 - 204  

Park, Kundo (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Scaccabarozzi, Diego (Department of Mechanical Engineering, Politecnico di Milano) ,  Sbarufatti, Claudio (Department of Mechanical Engineering, Politecnico di Milano) ,  Jimenez-Suarez, Aberto (Escuela Superior de Ciencias Experimentales y Tecnologí) ,  Ureña, Alejandro (a, Universidad Rey Juan Carlos) ,  Ryu, Seunghwa (Escuela Superior de Ciencias Experimentales y Tecnologí) ,  Libonati, Flavia (a, Universidad Rey Juan Carlos)

Abstract AI-Helper 아이콘AI-Helper

Abstract Owing to the high strength-to-weight and stiffness-to-weight ratios, composite materials are today essential building blocks for a wide range of industrial applications. However, their complex microstructures make it difficult to predict their failure mechanisms and residual lives under va...

Keyword

참고문헌 (45)

  1. J. Compos. Mater. Sih 7 2 230 1973 10.1177/002199837300700207 Fracture analysis of unidirectional composites 

  2. Compos. Sci. Technol. Giordano 58 12 1923 1998 10.1016/S0266-3538(98)00013-X An acoustic-emission characterization of the failure modes in polymer-composite materials 

  3. Spillman 1989 Fiber Optic Sensors for Composite Monitoring 

  4. Chang 13 1998 Structural Health Monitoring: A Summary Report on the First Stanford Workshop on Structural Health Monitoring 

  5. Abdo 2014 Structural Health Monitoring, History, Applications and Future 

  6. Eng. Struct. Ko 27 12 1715 2005 10.1016/j.engstruct.2005.02.021 Technology developments in structural health monitoring of large-scale bridges 

  7. Kessler 2002 Piezoelectric-based In-Situ Damage Detection of Composite Materials for Structural Health Monitoring Systems 

  8. ACS Appl. Mater. Interfaces Fernandez Sanchez-Romate 9 49 43267 2017 10.1021/acsami.7b16036 Carbon nanotube-doped adhesive films for detecting crack propagation on bonded joints: a deeper understanding of anomalous behaviors 

  9. J. Mech. Phys. Solid. Matos 114 84 2018 10.1016/j.jmps.2018.02.014 Predictions of the electro-mechanical response of conductive CNT-polymer composites 

  10. Adv. Mater. Thostenson 18 21 2837 2006 10.1002/adma.200600977 Carbon nanotube networks: sensing of distributed strain and damage for life prediction and self healing 

  11. Carbon Gao 47 5 1381 2009 10.1016/j.carbon.2009.01.030 Coupled carbon nanotube network and acoustic emission monitoring for sensing of damage development in composites 

  12. Nat. Commun. Picot 8 1 14425 2017 10.1038/ncomms14425 Using graphene networks to build bioinspired self-monitoring ceramics 

  13. Smart Mater. Struct. Sanchez-Romate 29 3 2020 10.1088/1361-665X/ab7109 Fatigue crack growth identification in bonded joints by using carbon nanotube doped adhesive films 

  14. Sensors Ku-Herrera 16 3 400 2016 10.3390/s16030400 Self-sensing of damage progression in unidirectional multiscale hierarchical composites subjected to cyclic tensile loading 

  15. Compos. B Eng. Libonati 50 82 2013 10.1016/j.compositesb.2013.01.012 Damage assessment of composite materials by means of thermographic analyses 

  16. Frat. Ed. Integrita Strutt. Vergani 8 27 2013 A review of thermographic techniques for damage investigation in composites 

  17. Procedia Eng. Libonati 10 3518 2011 10.1016/j.proeng.2011.04.579 Fatigue behavior of a GFRP laminate by thermographic measurements 

  18. Compos. B Eng. Jimenez-Suarez 48 88 2013 10.1016/j.compositesb.2012.12.011 The influence of mechanical dispersion of MWCNT in epoxy matrix by calendering method: batch method versus time controlled 

  19. Compos. B Eng. Jimenez-Suarez 43 8 3482 2012 10.1016/j.compositesb.2011.12.009 Influence of the functionalization of carbon nanotubes on calendering dispersion effectiveness in a low viscosity resin for VARIM processes 

  20. RSC Adv. Sanchez-Romate 6 49 43418 2016 10.1039/C6RA03619H Novel approach to percolation threshold on electrical conductivity of carbon nanotube reinforced nanocomposites 

  21. Mater. Des. Montazeri 31 9 4202 2010 10.1016/j.matdes.2010.04.018 Mechanical properties of multi-walled carbon nanotube/epoxy composites 

  22. Mater. Des. Montazeri 32 4 2301 2011 10.1016/j.matdes.2010.11.003 Viscoelastic and mechanical properties of multi walled carbon nanotube/epoxy composites with different nanotube content 

  23. Compos. Appl. Sci. Manuf. Chandrasekaran 42 8 1007 2011 10.1016/j.compositesa.2011.04.004 Influence of resin properties on interlaminar shear strength of glass/epoxy/MWNT hybrid composites 

  24. Compos. B Eng. Jimenez-Suarez 94 286 2016 10.1016/j.compositesb.2016.02.063 Effect of filtration in functionalized and non-functionalized CNTs and surface modification of fibers as an effective alternative approach 

  25. 2017 D3039/D3039M-17 Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials 

  26. Comput. Mater. Sci. Msekh 96 472 2015 10.1016/j.commatsci.2014.05.071 Abaqus implementation of phase-field model for brittle fracture 

  27. Finite Elem. Anal. Des. Molnar 130 27 2017 10.1016/j.finel.2017.03.002 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture 

  28. Comput. Mater. Sci. Jeong 155 483 2018 10.1016/j.commatsci.2018.09.021 Phase field modeling of crack propagation under combined shear and tensile loading with hybrid formulation 

  29. Phys. Rev. Lett. Spatschek 96 1 2006 10.1103/PhysRevLett.96.015502 Phase field modeling of fast crack propagation 

  30. Comput. Methods Appl. Mech. Eng. Duarte 190 15 2227 2001 10.1016/S0045-7825(00)00233-4 A generalized finite element method for the simulation of three-dimensional dynamic crack propagation 

  31. Int. J. Numer. Methods Eng. Ortiz 44 9 1267 1999 10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7 Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis 

  32. Geophysics Coggon 36 1 132 1971 10.1190/1.1440151 Electromagnetic and electrical modeling by the finite element method 

  33. Jin 2015 The Finite Element Method in Electromagnetics 

  34. Bathe 2006 Finite Element Procedures 

  35. Lewis 1996 The Finite Element Method in Heat Transfer Analysis 

  36. Rev. Sci. Instrum. Salerno 80 3 2009 10.1063/1.3090885 Calibration of the thermoelastic constants for quantitative thermoelastic stress analysis on composites 

  37. J. Strain Anal. Eng. Des. Pitarresi 38 5 405 2003 10.1243/03093240360713469 A review of the general theory of thermoelastic stress analysis 

  38. J. Strain Anal. Eng. Des. Stanley 23 3 137 1988 10.1243/03093247V233137 The application of thermoelastic stress analysis techniques to composite materials 

  39. Wallenberger 2001 “Glass Fibers” Composites. D. B. Miracle and S. L. Donaldson, ASM International 

  40. 1998 Hot Curing Epoxy System Based on Araldite LY556/Hardener HY917/Accelerator DY070 

  41. Int. J. Struct. Integr. Colombo 3 4 424 2012 10.1108/17579861211281218 Fatigue damage in GFRP 

  42. Int. J. Fatig. Murakami 16 3 163 1994 10.1016/0142-1123(94)90001-9 Effects of defects, inclusions and inhomogeneities on fatigue strength 

  43. Int. J. Fatig. Murakami 2 1 23 1980 10.1016/0142-1123(80)90024-9 Effects of small defects on fatigue strength of metals 

  44. Eng. Fract. Mech. Hashin 25 5 771 1986 10.1016/0013-7944(86)90040-8 Analysis of stiffness reduction of cracked cross-ply laminates 

  45. J. Compos. Mater. Talreja 19 4 355 1985 10.1177/002199838501900404 Transverse cracking and stiffness reduction in composite laminates 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로