최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Carbon, v.166, 2020년, pp.193 - 204
Park, Kundo (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) , Scaccabarozzi, Diego (Department of Mechanical Engineering, Politecnico di Milano) , Sbarufatti, Claudio (Department of Mechanical Engineering, Politecnico di Milano) , Jimenez-Suarez, Aberto (Escuela Superior de Ciencias Experimentales y Tecnologí) , Ureña, Alejandro (a, Universidad Rey Juan Carlos) , Ryu, Seunghwa (Escuela Superior de Ciencias Experimentales y Tecnologí) , Libonati, Flavia (a, Universidad Rey Juan Carlos)
Abstract Owing to the high strength-to-weight and stiffness-to-weight ratios, composite materials are today essential building blocks for a wide range of industrial applications. However, their complex microstructures make it difficult to predict their failure mechanisms and residual lives under va...
J. Compos. Mater. Sih 7 2 230 1973 10.1177/002199837300700207 Fracture analysis of unidirectional composites
Compos. Sci. Technol. Giordano 58 12 1923 1998 10.1016/S0266-3538(98)00013-X An acoustic-emission characterization of the failure modes in polymer-composite materials
Spillman 1989 Fiber Optic Sensors for Composite Monitoring
Chang 13 1998 Structural Health Monitoring: A Summary Report on the First Stanford Workshop on Structural Health Monitoring
Abdo 2014 Structural Health Monitoring, History, Applications and Future
Eng. Struct. Ko 27 12 1715 2005 10.1016/j.engstruct.2005.02.021 Technology developments in structural health monitoring of large-scale bridges
Kessler 2002 Piezoelectric-based In-Situ Damage Detection of Composite Materials for Structural Health Monitoring Systems
ACS Appl. Mater. Interfaces Fernandez Sanchez-Romate 9 49 43267 2017 10.1021/acsami.7b16036 Carbon nanotube-doped adhesive films for detecting crack propagation on bonded joints: a deeper understanding of anomalous behaviors
J. Mech. Phys. Solid. Matos 114 84 2018 10.1016/j.jmps.2018.02.014 Predictions of the electro-mechanical response of conductive CNT-polymer composites
Adv. Mater. Thostenson 18 21 2837 2006 10.1002/adma.200600977 Carbon nanotube networks: sensing of distributed strain and damage for life prediction and self healing
Carbon Gao 47 5 1381 2009 10.1016/j.carbon.2009.01.030 Coupled carbon nanotube network and acoustic emission monitoring for sensing of damage development in composites
Nat. Commun. Picot 8 1 14425 2017 10.1038/ncomms14425 Using graphene networks to build bioinspired self-monitoring ceramics
Smart Mater. Struct. Sanchez-Romate 29 3 2020 10.1088/1361-665X/ab7109 Fatigue crack growth identification in bonded joints by using carbon nanotube doped adhesive films
Sensors Ku-Herrera 16 3 400 2016 10.3390/s16030400 Self-sensing of damage progression in unidirectional multiscale hierarchical composites subjected to cyclic tensile loading
Compos. B Eng. Libonati 50 82 2013 10.1016/j.compositesb.2013.01.012 Damage assessment of composite materials by means of thermographic analyses
Frat. Ed. Integrita Strutt. Vergani 8 27 2013 A review of thermographic techniques for damage investigation in composites
Procedia Eng. Libonati 10 3518 2011 10.1016/j.proeng.2011.04.579 Fatigue behavior of a GFRP laminate by thermographic measurements
Compos. B Eng. Jimenez-Suarez 48 88 2013 10.1016/j.compositesb.2012.12.011 The influence of mechanical dispersion of MWCNT in epoxy matrix by calendering method: batch method versus time controlled
Compos. B Eng. Jimenez-Suarez 43 8 3482 2012 10.1016/j.compositesb.2011.12.009 Influence of the functionalization of carbon nanotubes on calendering dispersion effectiveness in a low viscosity resin for VARIM processes
RSC Adv. Sanchez-Romate 6 49 43418 2016 10.1039/C6RA03619H Novel approach to percolation threshold on electrical conductivity of carbon nanotube reinforced nanocomposites
Mater. Des. Montazeri 31 9 4202 2010 10.1016/j.matdes.2010.04.018 Mechanical properties of multi-walled carbon nanotube/epoxy composites
Mater. Des. Montazeri 32 4 2301 2011 10.1016/j.matdes.2010.11.003 Viscoelastic and mechanical properties of multi walled carbon nanotube/epoxy composites with different nanotube content
Compos. Appl. Sci. Manuf. Chandrasekaran 42 8 1007 2011 10.1016/j.compositesa.2011.04.004 Influence of resin properties on interlaminar shear strength of glass/epoxy/MWNT hybrid composites
Compos. B Eng. Jimenez-Suarez 94 286 2016 10.1016/j.compositesb.2016.02.063 Effect of filtration in functionalized and non-functionalized CNTs and surface modification of fibers as an effective alternative approach
2017 D3039/D3039M-17 Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials
Comput. Mater. Sci. Msekh 96 472 2015 10.1016/j.commatsci.2014.05.071 Abaqus implementation of phase-field model for brittle fracture
Finite Elem. Anal. Des. Molnar 130 27 2017 10.1016/j.finel.2017.03.002 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture
Comput. Mater. Sci. Jeong 155 483 2018 10.1016/j.commatsci.2018.09.021 Phase field modeling of crack propagation under combined shear and tensile loading with hybrid formulation
Phys. Rev. Lett. Spatschek 96 1 2006 10.1103/PhysRevLett.96.015502 Phase field modeling of fast crack propagation
Comput. Methods Appl. Mech. Eng. Duarte 190 15 2227 2001 10.1016/S0045-7825(00)00233-4 A generalized finite element method for the simulation of three-dimensional dynamic crack propagation
Int. J. Numer. Methods Eng. Ortiz 44 9 1267 1999 10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7 Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis
Geophysics Coggon 36 1 132 1971 10.1190/1.1440151 Electromagnetic and electrical modeling by the finite element method
Jin 2015 The Finite Element Method in Electromagnetics
Bathe 2006 Finite Element Procedures
Lewis 1996 The Finite Element Method in Heat Transfer Analysis
Rev. Sci. Instrum. Salerno 80 3 2009 10.1063/1.3090885 Calibration of the thermoelastic constants for quantitative thermoelastic stress analysis on composites
J. Strain Anal. Eng. Des. Pitarresi 38 5 405 2003 10.1243/03093240360713469 A review of the general theory of thermoelastic stress analysis
J. Strain Anal. Eng. Des. Stanley 23 3 137 1988 10.1243/03093247V233137 The application of thermoelastic stress analysis techniques to composite materials
Wallenberger 2001 “Glass Fibers” Composites. D. B. Miracle and S. L. Donaldson, ASM International
1998 Hot Curing Epoxy System Based on Araldite LY556/Hardener HY917/Accelerator DY070
Int. J. Struct. Integr. Colombo 3 4 424 2012 10.1108/17579861211281218 Fatigue damage in GFRP
Int. J. Fatig. Murakami 16 3 163 1994 10.1016/0142-1123(94)90001-9 Effects of defects, inclusions and inhomogeneities on fatigue strength
Int. J. Fatig. Murakami 2 1 23 1980 10.1016/0142-1123(80)90024-9 Effects of small defects on fatigue strength of metals
Eng. Fract. Mech. Hashin 25 5 771 1986 10.1016/0013-7944(86)90040-8 Analysis of stiffness reduction of cracked cross-ply laminates
J. Compos. Mater. Talreja 19 4 355 1985 10.1177/002199838501900404 Transverse cracking and stiffness reduction in composite laminates
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.