최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Nature communications, v.11 no.1 = v.11, 2020년, pp.665 -
Kim, Hye Young (Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213 USA) , Jackson, Timothy R. (Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213 USA) , Stuckenholz, Carsten (Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213 USA) , Davidson, Lance A. (Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213 USA)
Injury, surgery, and disease often disrupt tissues and it is the process of regeneration that aids the restoration of architecture and function. Regeneration can occur through multiple strategies including stem cell expansion, transdifferentiation, or proliferation of differentiated cells. We have i...
1. Walentek P Quigley IK What we can learn from a tadpole about ciliopathies and airway diseases: using systems biology in Xenopus to study cilia and mucociliary epithelia Genesis 2017 55 e23001 10.1002/dvg.23001
2. Dubaissi E Papalopulu N Embryonic frog epidermis: a model for the study of cell-cell interactions in the development of mucociliary disease Dis. Model Mech. 2011 4 179 192 10.1242/dmm.006494 21183475
3. Quigley IK Stubbs JL Kintner C Specification of ion transport cells in the Xenopus larval skin Development 2011 138 705 714 10.1242/dev.055699 21266406
4. Stubbs J Vladar E Axelrod J Kintner C Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation Nat. Cell Biol. 2012 14 140 147 10.1038/ncb2406 22231168
5. Walentek P A novel serotonin-secreting cell type regulates ciliary motility in the mucociliary epidermis of Xenopus tadpoles Development 2014 141 1526 1533 10.1242/dev.102343 24598162
6. Dubaissi E A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis Development 2014 141 1514 1525 10.1242/dev.102426 24598166
7. Deblandre GA Wettstein DA Koyano-Nakagawa N Kintner C A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos Development 1999 126 4715 4728 10518489
8. Stubbs JL Davidson L Keller R Kintner C Radial intercalation of ciliated cells during Xenopus skin development Development 2006 133 2507 2515 10.1242/dev.02417 16728476
9. Maitre JL Asymmetric division of contractile domains couples cell positioning and fate specification Nature 2016 536 344 348 10.1038/nature18958 27487217
10. Shyer AE Emergent cellular self-organization and mechanosensation initiate follicle pattern in the avian skin Science 2017 357 811 815 10.1126/science.aai7868 28705989
11. Engler AJ Sen S Sweeney HL Discher DE Matrix elasticity directs stem cell lineage specification Cell 2006 126 677 689 10.1016/j.cell.2006.06.044 16923388
12. McBeath R Pirone DM Nelson CM Bhadriraju K Chen CS Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment Developmental Cell 2004 6 483 495 10.1016/S1534-5807(04)00075-9 15068789
13. Kilian KA Bugarija B Lahn BT Mrksich M Geometric cues for directing the differentiation of mesenchymal stem cells Proc. Natl Acad. Sci. USA 2010 107 4872 4877 10.1073/pnas.0903269107 20194780
14. Merzdorf CS Chen YH Goodenough DA Formation of functional tight junctions in Xenopus embryos Developmental Biol. 1998 195 187 203 10.1006/dbio.1997.8846
15. Jamrich M Sargent TD Dawid IB Cell-type-specific expression of epidermal cytokeratin genes during gastrulation of Xenopus laevis Genes Dev. 1987 1 124 132 10.1101/gad.1.2.124 2445625
16. Chanet S Martin AC Mechanical force sensing in tissues Prog. Mol. Biol. Transl. Sci. 2014 126 317 10.1016/B978-0-12-394624-9.00013-0 25081624
17. Dupont S Role of YAP/TAZ in mechanotransduction Nature 2011 474 179 183 10.1038/nature10137 21654799
18. Aragona M A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors Cell 2013 154 1047 1059 10.1016/j.cell.2013.07.042 23954413
19. von Dassow M Strother JA Davidson LA Surprisingly simple mechanical behavior of a complex embryonic tissue PLoS ONE 2010 5 e15359 10.1371/journal.pone.0015359 21203396
20. Turlier, H. & Maitre, J.-L. In Seminars in Cell & Developmental Biology , Vol. 47 110?117 (Elsevier, 2015).
21. Kurth T Immunocytochemical studies of the interactions of cadherins and catenins in the early Xenopus embryo Dev. Dyn. 1999 215 155 169 10.1002/(SICI)1097-0177(199906)215:2<155::AID-DVDY8>3.0.CO;2-S 10373020
22. Jackson TR Kim HY Balakrishnan UL Stuckenholz C Davidson LA Spatiotemporally controlled mechanical cues drive progenitor mesenchymal-to-epithelial transition enabling proper heart formation and function Curr. Biol. 2017 27 1326 1335 10.1016/j.cub.2017.03.065 28434863
23. Yam PT Actin-myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility J. Cell Biol. 2007 178 1207 1221 10.1083/jcb.200706012 17893245
24. Kim HY Davidson LA Punctuated actin contractions during convergent extension and their permissive regulation by the non-canonical Wnt-signaling pathway J. Cell Sci. 2011 124 635 646 10.1242/jcs.067579 21266466
25. Zhou J Kim HY Wang JH-C Davidson LA Macroscopic stiffening of embryonic tissues via microtubules, Rho-GEF, and assembly of contractile bundles of actomyosin Development 2010 137 2785 2794 10.1242/dev.045997 20630946
26. Werner M Mitchell B Understanding ciliated epithelia: the power of Xenopus Genesis 2012 50 176 185 10.1002/dvg.20824 22083727
27. Bragulla HH Homberger DG Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia J. Anat. 2009 214 516 559 10.1111/j.1469-7580.2009.01066.x 19422428
28. Schroeder TE Neurulation in Xenopus laevis. An analysis and model based upon light and electron microscopy J. Embryol. Expt. Morphol. 1970 23 427 462
29. Whitsett JA Airway epithelial differentiation and mucociliary clearance Ann. Am. Thorac. Soc. 2018 15 S143 S148 10.1513/AnnalsATS.201802-128AW 30431340
30. Kim HY Jackson TR Davidson LA On the role of mechanics in driving mesenchymal-to-epithelial transitions Semin Cell Dev. Biol. 2017 67 113 122 10.1016/j.semcdb.2016.05.011 27208723
31. Rock JR Randell SH Hogan BL Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling Dis. Mod. Mech. 2010 3 545 556 10.1242/dmm.006031
32. Gilbert PM Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture Science 2010 329 1078 1081 10.1126/science.1191035 20647425
33. Fierro-Gonzalez JC White MD Silva JC Plachta N Cadherin-dependent filopodia control preimplantation embryo compaction Nat. Cell Biol. 2013 15 1424 1433 10.1038/ncb2875 24270889
34. Maitre JL Niwayama R Turlier H Nedelec F Hiiragi T Pulsatile cell-autonomous contractility drives compaction in the mouse embryo Nat. Cell Biol. 2015 17 849 855 10.1038/ncb3185 26075357
35. Korotkevich E The apical domain is required and sufficient for the first lineage segregation in the mouse embryo Dev. Cell 2017 40 235 247. e237 10.1016/j.devcel.2017.01.006 28171747
36. Mongera A A fluid-to-solid jamming transition underlies vertebrate body axis elongation Nature 2018 561 1 10.1038/s41586-018-0479-2
37. Kuroda H Fuentealba L Ikeda A Reversade B De Robertis E Default neural induction: neuralization of dissociated Xenopus cells is mediated by Ras/MAPK activation Genes Dev. 2005 19 1022 1027 10.1101/gad.1306605 15879552
38. Ariizumi T Asashima M In vitro induction systems for analyses of amphibian organogenesis and body patterning Int J. Dev. Biol. 2001 45 273 279 11291857
39. Sedzinski J Hannezo E Tu F Biro M Wallingford JB Emergence of an apical epithelial cell surface in vivo Dev. Cell 2016 36 24 35 10.1016/j.devcel.2015.12.013 26766441
40. Stooke-Vaughan GA Davidson LA Woolner S Xenopus as a model for studies in mechanical stress and cell division Genesis 2017 55 e23004 10.1002/dvg.23004
41. Stepien TL Lynch HE Yancey SX Dempsey L Davidson LA Using a continuum model to decipher the mechanics of embryonic tissue spreading from time-lapse image sequences: An approximate Bayesian computation approach PLoS ONE 2019 14 460774
42. Chien Y-H Keller R Kintner C Shook DR Mechanical strain determines the axis of planar polarity in ciliated epithelia Curr. Biol. 2015 25 2774 2784 10.1016/j.cub.2015.09.015 26441348
43. Chien Y-H Srinivasan S Keller R Kintner C Mechanical strain determines cilia length, motility, and planar position in the left-right organizer Dev. Cell 2018 45 316 330. e314 10.1016/j.devcel.2018.04.007 29738711
44. Sive, H. L., Grainger, R. M., Harland, R. M. (eds.) Early development of Xenopus laevis: a laboratory manual . (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2000).
45. Edlund AF Davidson LA Keller RE Cell segregation, mixing, and tissue pattern in the spinal cord of the Xenopus laevis neurula Dev. Dyn. 2013 242 1134 1146 10.1002/dvdy.24004 23813905
46. Banko MR Chemical genetic screen for AMPKα2 substrates uncovers a network of proteins involved in mitosis Mol. Cell 2011 44 878 892 10.1016/j.molcel.2011.11.005 22137581
47. Preibisch S Saalfeld S Tomancak P Globally optimal stitching of tiled 3D microscopic image acquisitions Bioinformatics 2009 25 1463 1465 10.1093/bioinformatics/btp184 19346324
48. Zhou J Kim HY Davidson LA Actomyosin stiffens the vertebrate embryo during critical stages of elongation and neural tube closure Development 2009 136 677 688 10.1242/dev.026211 19168681
49. Zhou J Pal S Maiti S Davidson LA Force production and mechanical adaptation during convergent extension Development 2015 142 692 701 10.1242/dev.116533 25670794
50. Pfister K Shook DR Chang C Keller R Skoglund P Molecular model for force production and transmission during vertebrate gastrulation Development 2016 143 715 727 10.1242/dev.128090 26884399
51. Rolo A Skoglund P Keller R Morphogenetic movements driving neural tube closure in Xenopus require myosin IIB Dev. Biol. 2009 327 327 338 10.1016/j.ydbio.2008.12.009 19121300
52. Skoglund P Rolo A Chen X Gumbiner BM Keller R Convergence and extension at gastrulation require a myosin IIB-dependent cortical actin network Development 2008 135 2435 2444 10.1242/dev.014704 18550716
53. von Dassow M Davidson LA Natural variation in embryo mechanics: gastrulation in Xenopus laevis is highly robust to variation in tissue stiffness Dev. Dyn. 2009 238 2 18 10.1002/dvdy.21809 19097119
54. Schneider CA Rasband WS Eliceiri KW NIH Image to ImageJ: 25 years of image analysis Nat. Methods 2012 9 671 675 10.1038/nmeth.2089 22930834
55. Sato M Levesque MJ Nerem RM An application of the micropipette technique to the measurement of the mechanical properties of cultured bovine aortic endothelial cells J. Biomech. Eng. 1987 109 27 34 10.1115/1.3138638 3560876
56. ?indelka R Ferjentsik Z Jonak J Developmental expression profiles of Xenopus laevis reference genes Dev. Dyn. 2006 235 754 758 10.1002/dvdy.20665 16397894
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.