$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Tissue mechanics drives regeneration of a mucociliated epidermis on the surface of Xenopus embryonic aggregates 원문보기

Nature communications, v.11 no.1 = v.11, 2020년, pp.665 -   

Kim, Hye Young (Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213 USA) ,  Jackson, Timothy R. (Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213 USA) ,  Stuckenholz, Carsten (Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213 USA) ,  Davidson, Lance A. (Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213 USA)

Abstract AI-Helper 아이콘AI-Helper

Injury, surgery, and disease often disrupt tissues and it is the process of regeneration that aids the restoration of architecture and function. Regeneration can occur through multiple strategies including stem cell expansion, transdifferentiation, or proliferation of differentiated cells. We have i...

참고문헌 (56)

  1. 1. Walentek P Quigley IK What we can learn from a tadpole about ciliopathies and airway diseases: using systems biology in Xenopus to study cilia and mucociliary epithelia Genesis 2017 55 e23001 10.1002/dvg.23001 

  2. 2. Dubaissi E Papalopulu N Embryonic frog epidermis: a model for the study of cell-cell interactions in the development of mucociliary disease Dis. Model Mech. 2011 4 179 192 10.1242/dmm.006494 21183475 

  3. 3. Quigley IK Stubbs JL Kintner C Specification of ion transport cells in the Xenopus larval skin Development 2011 138 705 714 10.1242/dev.055699 21266406 

  4. 4. Stubbs J Vladar E Axelrod J Kintner C Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation Nat. Cell Biol. 2012 14 140 147 10.1038/ncb2406 22231168 

  5. 5. Walentek P A novel serotonin-secreting cell type regulates ciliary motility in the mucociliary epidermis of Xenopus tadpoles Development 2014 141 1526 1533 10.1242/dev.102343 24598162 

  6. 6. Dubaissi E A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis Development 2014 141 1514 1525 10.1242/dev.102426 24598166 

  7. 7. Deblandre GA Wettstein DA Koyano-Nakagawa N Kintner C A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos Development 1999 126 4715 4728 10518489 

  8. 8. Stubbs JL Davidson L Keller R Kintner C Radial intercalation of ciliated cells during Xenopus skin development Development 2006 133 2507 2515 10.1242/dev.02417 16728476 

  9. 9. Maitre JL Asymmetric division of contractile domains couples cell positioning and fate specification Nature 2016 536 344 348 10.1038/nature18958 27487217 

  10. 10. Shyer AE Emergent cellular self-organization and mechanosensation initiate follicle pattern in the avian skin Science 2017 357 811 815 10.1126/science.aai7868 28705989 

  11. 11. Engler AJ Sen S Sweeney HL Discher DE Matrix elasticity directs stem cell lineage specification Cell 2006 126 677 689 10.1016/j.cell.2006.06.044 16923388 

  12. 12. McBeath R Pirone DM Nelson CM Bhadriraju K Chen CS Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment Developmental Cell 2004 6 483 495 10.1016/S1534-5807(04)00075-9 15068789 

  13. 13. Kilian KA Bugarija B Lahn BT Mrksich M Geometric cues for directing the differentiation of mesenchymal stem cells Proc. Natl Acad. Sci. USA 2010 107 4872 4877 10.1073/pnas.0903269107 20194780 

  14. 14. Merzdorf CS Chen YH Goodenough DA Formation of functional tight junctions in Xenopus embryos Developmental Biol. 1998 195 187 203 10.1006/dbio.1997.8846 

  15. 15. Jamrich M Sargent TD Dawid IB Cell-type-specific expression of epidermal cytokeratin genes during gastrulation of Xenopus laevis Genes Dev. 1987 1 124 132 10.1101/gad.1.2.124 2445625 

  16. 16. Chanet S Martin AC Mechanical force sensing in tissues Prog. Mol. Biol. Transl. Sci. 2014 126 317 10.1016/B978-0-12-394624-9.00013-0 25081624 

  17. 17. Dupont S Role of YAP/TAZ in mechanotransduction Nature 2011 474 179 183 10.1038/nature10137 21654799 

  18. 18. Aragona M A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors Cell 2013 154 1047 1059 10.1016/j.cell.2013.07.042 23954413 

  19. 19. von Dassow M Strother JA Davidson LA Surprisingly simple mechanical behavior of a complex embryonic tissue PLoS ONE 2010 5 e15359 10.1371/journal.pone.0015359 21203396 

  20. 20. Turlier, H. & Maitre, J.-L. In Seminars in Cell & Developmental Biology , Vol. 47 110?117 (Elsevier, 2015). 

  21. 21. Kurth T Immunocytochemical studies of the interactions of cadherins and catenins in the early Xenopus embryo Dev. Dyn. 1999 215 155 169 10.1002/(SICI)1097-0177(199906)215:2<155::AID-DVDY8>3.0.CO;2-S 10373020 

  22. 22. Jackson TR Kim HY Balakrishnan UL Stuckenholz C Davidson LA Spatiotemporally controlled mechanical cues drive progenitor mesenchymal-to-epithelial transition enabling proper heart formation and function Curr. Biol. 2017 27 1326 1335 10.1016/j.cub.2017.03.065 28434863 

  23. 23. Yam PT Actin-myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility J. Cell Biol. 2007 178 1207 1221 10.1083/jcb.200706012 17893245 

  24. 24. Kim HY Davidson LA Punctuated actin contractions during convergent extension and their permissive regulation by the non-canonical Wnt-signaling pathway J. Cell Sci. 2011 124 635 646 10.1242/jcs.067579 21266466 

  25. 25. Zhou J Kim HY Wang JH-C Davidson LA Macroscopic stiffening of embryonic tissues via microtubules, Rho-GEF, and assembly of contractile bundles of actomyosin Development 2010 137 2785 2794 10.1242/dev.045997 20630946 

  26. 26. Werner M Mitchell B Understanding ciliated epithelia: the power of Xenopus Genesis 2012 50 176 185 10.1002/dvg.20824 22083727 

  27. 27. Bragulla HH Homberger DG Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia J. Anat. 2009 214 516 559 10.1111/j.1469-7580.2009.01066.x 19422428 

  28. 28. Schroeder TE Neurulation in Xenopus laevis. An analysis and model based upon light and electron microscopy J. Embryol. Expt. Morphol. 1970 23 427 462 

  29. 29. Whitsett JA Airway epithelial differentiation and mucociliary clearance Ann. Am. Thorac. Soc. 2018 15 S143 S148 10.1513/AnnalsATS.201802-128AW 30431340 

  30. 30. Kim HY Jackson TR Davidson LA On the role of mechanics in driving mesenchymal-to-epithelial transitions Semin Cell Dev. Biol. 2017 67 113 122 10.1016/j.semcdb.2016.05.011 27208723 

  31. 31. Rock JR Randell SH Hogan BL Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling Dis. Mod. Mech. 2010 3 545 556 10.1242/dmm.006031 

  32. 32. Gilbert PM Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture Science 2010 329 1078 1081 10.1126/science.1191035 20647425 

  33. 33. Fierro-Gonzalez JC White MD Silva JC Plachta N Cadherin-dependent filopodia control preimplantation embryo compaction Nat. Cell Biol. 2013 15 1424 1433 10.1038/ncb2875 24270889 

  34. 34. Maitre JL Niwayama R Turlier H Nedelec F Hiiragi T Pulsatile cell-autonomous contractility drives compaction in the mouse embryo Nat. Cell Biol. 2015 17 849 855 10.1038/ncb3185 26075357 

  35. 35. Korotkevich E The apical domain is required and sufficient for the first lineage segregation in the mouse embryo Dev. Cell 2017 40 235 247. e237 10.1016/j.devcel.2017.01.006 28171747 

  36. 36. Mongera A A fluid-to-solid jamming transition underlies vertebrate body axis elongation Nature 2018 561 1 10.1038/s41586-018-0479-2 

  37. 37. Kuroda H Fuentealba L Ikeda A Reversade B De Robertis E Default neural induction: neuralization of dissociated Xenopus cells is mediated by Ras/MAPK activation Genes Dev. 2005 19 1022 1027 10.1101/gad.1306605 15879552 

  38. 38. Ariizumi T Asashima M In vitro induction systems for analyses of amphibian organogenesis and body patterning Int J. Dev. Biol. 2001 45 273 279 11291857 

  39. 39. Sedzinski J Hannezo E Tu F Biro M Wallingford JB Emergence of an apical epithelial cell surface in vivo Dev. Cell 2016 36 24 35 10.1016/j.devcel.2015.12.013 26766441 

  40. 40. Stooke-Vaughan GA Davidson LA Woolner S Xenopus as a model for studies in mechanical stress and cell division Genesis 2017 55 e23004 10.1002/dvg.23004 

  41. 41. Stepien TL Lynch HE Yancey SX Dempsey L Davidson LA Using a continuum model to decipher the mechanics of embryonic tissue spreading from time-lapse image sequences: An approximate Bayesian computation approach PLoS ONE 2019 14 460774 

  42. 42. Chien Y-H Keller R Kintner C Shook DR Mechanical strain determines the axis of planar polarity in ciliated epithelia Curr. Biol. 2015 25 2774 2784 10.1016/j.cub.2015.09.015 26441348 

  43. 43. Chien Y-H Srinivasan S Keller R Kintner C Mechanical strain determines cilia length, motility, and planar position in the left-right organizer Dev. Cell 2018 45 316 330. e314 10.1016/j.devcel.2018.04.007 29738711 

  44. 44. Sive, H. L., Grainger, R. M., Harland, R. M. (eds.) Early development of Xenopus laevis: a laboratory manual . (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2000). 

  45. 45. Edlund AF Davidson LA Keller RE Cell segregation, mixing, and tissue pattern in the spinal cord of the Xenopus laevis neurula Dev. Dyn. 2013 242 1134 1146 10.1002/dvdy.24004 23813905 

  46. 46. Banko MR Chemical genetic screen for AMPKα2 substrates uncovers a network of proteins involved in mitosis Mol. Cell 2011 44 878 892 10.1016/j.molcel.2011.11.005 22137581 

  47. 47. Preibisch S Saalfeld S Tomancak P Globally optimal stitching of tiled 3D microscopic image acquisitions Bioinformatics 2009 25 1463 1465 10.1093/bioinformatics/btp184 19346324 

  48. 48. Zhou J Kim HY Davidson LA Actomyosin stiffens the vertebrate embryo during critical stages of elongation and neural tube closure Development 2009 136 677 688 10.1242/dev.026211 19168681 

  49. 49. Zhou J Pal S Maiti S Davidson LA Force production and mechanical adaptation during convergent extension Development 2015 142 692 701 10.1242/dev.116533 25670794 

  50. 50. Pfister K Shook DR Chang C Keller R Skoglund P Molecular model for force production and transmission during vertebrate gastrulation Development 2016 143 715 727 10.1242/dev.128090 26884399 

  51. 51. Rolo A Skoglund P Keller R Morphogenetic movements driving neural tube closure in Xenopus require myosin IIB Dev. Biol. 2009 327 327 338 10.1016/j.ydbio.2008.12.009 19121300 

  52. 52. Skoglund P Rolo A Chen X Gumbiner BM Keller R Convergence and extension at gastrulation require a myosin IIB-dependent cortical actin network Development 2008 135 2435 2444 10.1242/dev.014704 18550716 

  53. 53. von Dassow M Davidson LA Natural variation in embryo mechanics: gastrulation in Xenopus laevis is highly robust to variation in tissue stiffness Dev. Dyn. 2009 238 2 18 10.1002/dvdy.21809 19097119 

  54. 54. Schneider CA Rasband WS Eliceiri KW NIH Image to ImageJ: 25 years of image analysis Nat. Methods 2012 9 671 675 10.1038/nmeth.2089 22930834 

  55. 55. Sato M Levesque MJ Nerem RM An application of the micropipette technique to the measurement of the mechanical properties of cultured bovine aortic endothelial cells J. Biomech. Eng. 1987 109 27 34 10.1115/1.3138638 3560876 

  56. 56. ?indelka R Ferjentsik Z Jonak J Developmental expression profiles of Xenopus laevis reference genes Dev. Dyn. 2006 235 754 758 10.1002/dvdy.20665 16397894 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로