최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Nature communications, v.11 no.1 = v.11, 2020년, pp.805 -
Paik, Sangyoon (Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749 Republic of Korea) , Kim, Gwangmook (Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749 Republic of Korea) , Chang, Sehwan (Department of Physics, Korea University, Seoul, 02841 Republic of Korea) , Lee, Sooun (Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749 Republic of Korea) , Jin, Dana (Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749 Republic of Korea) , Jeong, Kwang-Yong (Department of Physics, Korea University, Seoul, 02841 Republic of Korea) , Lee, I Sak (School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 Republic of Korea) , Lee, Jekwan (Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea) , Moon, Hongjae (Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749 Republic of Korea) , Lee, Jaejun (Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749 R) , Chang, Kiseok , Choi, Su Seok , Moon, Jeongmin , Jung, Soonshin , Kang, Shinill , Lee, Wooyoung , Choi, Heon-Jin , Choi, Hyunyong , Kim, Hyun Jae , Lee, Jae-Hyun , Cheon, Jinwoo , Kim, Miso , Myoung, Jaemin , Park, Hong-Gyu , Shim, Wooyoung
Photolithography is the prevalent microfabrication technology. It needs to meet resolution and yield demands at a cost that makes it economically viable. However, conventional far-field photolithography has reached the diffraction limit, which imposes complex optics and short-wavelength beam source ...
1. Ito T Okazaki S Pushing the limits of lithography Nature 2000 406 1027 1031 10.1038/35023233 10984061
2. Kerkhof Mvande Enabling sub-10nm node lithography: presenting the NXE:3400B EUV scanner Proc. SPIE 2017 10143 101430D
3. Wong, A. K. Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).
4. Massey GA Microscopy and pattern generation with scanned evanescent waves Appl. Opt. 1984 23 658 660 10.1364/AO.23.000658 18204623
5. Alkaisi MM Blaikie RJ McNab SJ Nanolithography in the evanescent near field Adv. Mater. 2001 13 877 887 10.1002/1521-4095(200107)13:12/13<877::AID-ADMA877>3.0.CO;2-W
6. Blaikie RJ Nanolithography using optical contact exposure in the evanescent near field Microelectron. Eng. 1999 46 85 88 10.1016/S0167-9317(99)00021-0
7. Goodberlet JG Dunn BL Deep-ultraviolet contact photolithography Microelectron. Eng. 2000 53 95 99 10.1016/S0167-9317(00)00272-0
8. Rogers JA Paul KE Jackman RJ Whitesides GM Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field Appl. Phys. Lett. 1997 70 2658 2660 10.1063/1.118988
9. Xia Y Rogers JA Paul KE Whitesides GM Unconventional methods for fabricating and patterning nanostructures Chem. Rev. 1999 99 1823 1848 10.1021/cr980002q 11849012
10. Huo F Beam pen lithography Nat. Nanotechnol. 2010 5 637 640 10.1038/nnano.2010.161 20676088
11. Liao X Desktop nanofabrication with massively multiplexed beam pen lithography Nat. Commun. 2013 4 2103 10.1038/ncomms3103 23868336
12. Shim W Hard-tip, soft-spring lithography Nature 2011 469 516 520 10.1038/nature09697 21270890
13. Shim W Multifunctional cantilever-free scanning probe arrays coated with multilayer graphene Proc. Natl Acad. Sci. USA 2012 109 18312 18317 10.1073/pnas.1216183109 23086161
14. Scott TF Kowalski BA Sullivan AC Bowman CN McLeod RR Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography Science 2009 324 913 917 10.1126/science.1167610 19359546
15. Li L Gattass RR Gershgoren E Hwang H Fourkas JT Achieving λ/20 resolution by one-color initiation and deactivation of polymerization Science 2009 324 910 913 10.1126/science.1168996 19359543
16. Andrew TL Tsai H-Y Menon R Confining light to deep subwavelength dimensions to enable optical nanopatterning Science 2009 324 917 921 10.1126/science.1167704 19359545
17. Lee KJ Fosser KA Nuzzo RG Fabrication of stable metallic patterns embedded in poly(dimethylsiloxane) and model applications in non-planar electronic and lab-on-a-chip device patterning Adv. Funct. Mater. 2005 15 557 566 10.1002/adfm.200400189
18. Kim JG Takama N Kim BJ Fujita H Optical-softlithographic technology for patterning on curved surfaces J. Micromech. Microeng. 2009 19 055017 10.1088/0960-1317/19/5/055017
19. Johnston ID McCluskey DK Tan CKL Tracey MC Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering J. Micromech. Microeng. 2014 24 035017 10.1088/0960-1317/24/3/035017
20. Wang B Development of antibacterial and high light transmittance bulk materials: Incorporation and sustained release of hydrophobic or hydrophilic antibiotics Colloids Surf. B Biointerfaces 2016 141 483 490 10.1016/j.colsurfb.2016.02.021 26896654
21. Sun J-Y Inorganic islands on a highly stretchable polyimide substrate J. Mater. Res. 2009 24 3338 3342 10.1557/jmr.2009.0417
22. Sun J-Y Debonding and fracture of ceramic islands on polymer substrates J. Appl. Phys. 2012 111 013517 10.1063/1.3673805
23. Chiu SL Leu J Ho PS Fracture of metalpolymer line structures. I. Semiflexible polyimide J. Appl. Phys. 1994 76 5136 5142 10.1063/1.357227
24. Cox HL The elasticity and strength of paper and other fibrous materials Br. J. Appl. Phys. 1952 3 72 79 10.1088/0508-3443/3/3/302
25. Lee J Shim W Lee E Noh J-S Lee W Highly mobile palladium thin films on an elastomeric substrate: nanogap-based hydrogen gas sensors Angew. Chem. Int. Ed. 2011 50 5301 5305 10.1002/anie.201100054
26. J. Douville N Li Z Takayama S D. Thouless M Fracture of metal coated elastomers Soft Matter 2011 7 6493 6500 10.1039/c1sm05140g
27. del Campo A Arzt E Fabrication approaches for generating complex micro- and nanopatterns on polymeric surfaces Chem. Rev. 2008 108 911 945 10.1021/cr050018y 18298098
28. Acikgoz C Hempenius MA Huskens J Vancso GJ Polymers in conventional and alternative lithography for the fabrication of nanostructures Eur. Polym. J. 2011 47 2033 2052 10.1016/j.eurpolymj.2011.07.025
29. Turner, S. R. & Daly, R. C. in Photopolymerisation and Photoimaging Science and Technology (ed. Allen, N. S.). 75?113 (Springer Netherlands, 1989).
30. Franssila, S. Introduction to Microfabrication . (John Wiley & Sons, 2010).
31. Shen Y-L Suresh S Blech IA Stresses, curvatures, and shape changes arising from patterned lines on silicon wafers J. Appl. Phys. 1998 80 1388 10.1063/1.362938
32. Tanaka T Hasegawa N Shiraishi H Okazaki S A new photolithography technique with antireflective coating on resist: ARCOR J. Electrochem. Soc. 1990 137 3900 3905 10.1149/1.2086324
33. Ma S Con C Yavuz M Cui B Polystyrene negative resist for high-resolution electron beam lithography Nanoscale Res. Lett. 2011 6 446 10.1186/1556-276X-6-446 21749679
34. Ghosh S Ananthasuresh GK Single-photon-multi-layer-interference lithography for high-aspect-ratio and three-dimensional SU-8 micro-/nanostructures Sci. Rep. 2016 6 18428 10.1038/srep18428 26725843
35. Jeong JK The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays Semicond. Sci. Technol. 2011 26 034008 10.1088/0268-1242/26/3/034008
36. Park J-S Jeong JK Chung H-J Mo Y-G Kim HD Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water Appl. Phys. Lett. 2008 92 072104 10.1063/1.2838380
37. Chu MX Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment Talanta 2011 83 960 965 10.1016/j.talanta.2010.10.055 21147344
38. Kim J Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics Nat. Commun. 2017 8 14997 10.1038/ncomms14997 28447604
39. Park J Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays Sci. Adv. 2018 4 eaap9841 10.1126/sciadv.aap9841 29387797
40. Chen RJ Zhang Y Wang D Dai H Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization J. Am. Chem. Soc. 2001 123 3838 3839 10.1021/ja010172b 11457124
41. Vukusic P Sambles JR Photonic structures in biology Nature 2003 424 852 855 10.1038/nature01941 12917700
42. Barnes WL Dereux A Ebbesen TW Surface plasmon subwavelength optics Nature 2003 424 824 830 10.1038/nature01937 12917696
43. Kustandi TS Low HY Teng JH Rodriguez I Yin R Mimicking domino-like photonic nanostructures on butterfly wings Small 2009 5 574 578 10.1002/smll.200801282 19152361
44. Xu T Wu Y-K Luo X Guo LJ Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging Nat. Commun. 2010 1 59 10.1038/ncomms1058 20975716
45. Kumar K Printing colour at the optical diffraction limit Nat. Nanotechnol. 2012 7 557 561 10.1038/nnano.2012.128 22886173
46. Kristensen A Plasmonic colour generation Nat. Rev. Mater. 2017 2 16088 10.1038/natrevmats.2016.88
47. Duan X Kamin S Liu N Dynamic plasmonic colour display Nat. Commun. 2017 8 14606 10.1038/ncomms14606 28232722
48. Zhu X Vannahme C Højlund-Nielsen E Mortensen NA Kristensen A Plasmonic colour laser printing Nat. Nanotechnol. 2016 11 325 329 10.1038/nnano.2015.285 26657786
49. Tan SJ Plasmonic color palettes for photorealistic printing with aluminum nanostructures Nano Lett. 2014 14 4023 4029 10.1021/nl501460x 24926611
50. Mudachathi R Tanaka T Up scalable full colour plasmonic pixels with controllable hue, brightness and saturation Sci. Rep. 2017 7 1199 10.1038/s41598-017-01266-6 28446794
51. West PR Searching for better plasmonic materials Laser Photonics Rev. 2010 4 795 808 10.1002/lpor.200900055
52. Chen W W. Lam RH Fu J Photolithographic surface micromachining of polydimethylsiloxane (PDMS) Lab. Chip 2012 12 391 395 10.1039/C1LC20721K 22089984
53. Guo L DeWeerth SP An effective lift-off method for patterning high-density gold interconnects on an elastomeric substrate Small 2010 6 2847 2852 10.1002/smll.201001456 21104803
54. Zhou J Khodakov DA Ellis AV Voelcker NH Surface modification for PDMS-based microfluidic devices ELECTROPHORESIS 2012 33 89 104 10.1002/elps.201100482 22128067
55. Genzer J Efimenko K Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers Science 2000 290 2130 2133 10.1126/science.290.5499.2130 11118144
56. Raki AD Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum Appl. Opt., AO 1995 34 4755 4767 10.1364/AO.34.004755
57. Green MA Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients Sol. Energy Mater. Sol. Cells 2008 92 1305 1310 10.1016/j.solmat.2008.06.009
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.