$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

초록

개념 간의 유사도 측정 방법은 의미망에서의 두 개념의 최단 경로의 수 노드의 깊이 관계의 종류 등의 정보를 이용하는 링크(Link) 기반 방법, 대용량의 말뭉치에서의 개념의 발생빈도를 확률로 계산한 정보량(Information Content) 기반 방법, 관련 단어들의 공기정보를 활용한 의미(Gloss) 기반 방법이 있으며, 이미 국외에서는 WordNet과 같은 의미적 언어자원을 활용하여 많은 연구가 진행되고 있다. 그러나 국내에서는 아직 한국어 의미망을 바탕으로 한 개념간의 유사성 측정 방법이나 이를 활용하는 방법에 대한 연구가 미흡하다. 본 논문에서는 이를 바탕으로 링크 타입 노드의 깊이 최단경로 정보량 등의 요소를 이용한 의미 유사도 측정방법을 제안하고 이를 활용하여 명사-용언간의 연계 정보를 확보함으로써, 효율적으로 명사-용언간의 네트워크를 구축하도록 한다.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일