$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

영한 기계 번역 품사 집합과 펜트리뱅크 코퍼스 품사 집합간의 품사 대응

Part of Speech Mapping between Tagset of English-Korean Machine Translation and Tagset of Penn Treebank Corpus

초록

펜트리뱅크 코퍼스를 기계 번역에서 품사 태깅의 통계 정보 추출에 이용하기 위해서는 펜트리뱅크 코퍼스의 품사 집합과 기계 번역의 품사 집합의 품사 대응이 필요하다. 본 연구는 기계 번역의 품사 태그 집합과 펜트리뱅크의 48개의 품사 태그를 서로 적절히 대응하여 펜트리뱅크 코퍼스의 통계 정보를 이용하는 품사 태깅 시스템을 구축하는데 발생하는 문제점과 그 해결방안을 제안한다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일