$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

VQ를 이용한 영상의 객체 특징 추출과 이를 이용한 내용기반 영상 검색

Representative Feature Extraction of Objects Using VQ and Its Application To Content-Based Image Retrieval

초록

내용 기반 영상 검색을 위해 본 연구에서는 Vector Quantization을 이용하여 영상을 구성하는 주요 객체들의 특징 추출 방법을 제안한다. 내용 기반 검색 시스템에서 사용되는 영상의 주요 특징들은 색상, 질감, 형태 및 영상을 구성하고 있는 객체들의 공간적 위치 등이 사용된다. 이러한 특징들 중에서 어떤 특징들을 사용하고 또 어떤 방식으로 결합하느냐에 따라 혹은 영상의 특성을 잘 나타낼 수 있는 주요 특징을 어떻게 추출, 표현하느냐에 따라 검색 성능에 큰 영향을 미친다. 이 중 본 논문에서는 일반적인 색상, 질감 특징 추출방법과 더불어 Vector Quantization 알고리즘을 이용하여 정지 영상을 구성하고 있는 객체들의 대표 색상과 질감 특징을 빠르게 추출하고 이를 내용 기반 검색에 이용함으로써 객체의 위치, 회전 및 크기 변화에 무관한 검색을 가능케 했다. 연구의 실험 결과 VQ를 이용함으로써 대표특징치 추출시간을 줄일 수 있었고 검색시 색상과 질감 특징의 가중치를 각각 0.5, 0.5로 주는 것이 가장 높은 검출율을 보였으며 제안된 방식에 의해 '사람' 영상의 경우 0.9의 검출율을 보였다.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일