$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

효과적인 빈발 항목 생성 알고리즘T

An Effective Large itemset Generation Algorithm

초록

대용량의 데이터베이스에서 여러 트랜잭션에 동시에 나타나는 항목들의 모임인 빈발 항목집합을 찾아내는 데이터 마이닝 방법을 연관 규칙 탐사라고 한다. 빈발 항목집합을 찾아내는 데이터 마이닝 방법을 연관 규칙 탐사라고 한다. 빈방 항목집합을 찾아내는 문제는 항목 집합들의 후보 집합을 생성하고 빈발 항목집합의 조건을 충족시키는 후보 집합을 추출함으로써 해결된다. 그리고 이러한 작업은 각각의 빈발 k-항목집합에 대해 k가 증가함에 따라 반복적으로 수행된다. 그러나 연관 규칙 탐사에 관한 기존의 연구는 주로 데이터베이스를 이루는 항목들의 수가 많거나 트랜잭션의 길이가 긴 경우의 대용량 데이터베이스에서 빈발 항목집합의 발견에 초점을 맞추고 있다. 본 논문에서는 데이터베이스를 이루는 전체 항목의 수가 적거나 트랜잭션의 크기가 작은 경우 효과적으로 빈발 항목집합을 찾을 수 있는 연관 규칙 탐사 방법을 제안한다. 그리고 성능 평가를 통하여 제안하는 방법의 성능 및 타당성을 보인다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일