$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Hopfield 네트워크를 이용한 데이터 클러스터링

Data Clustering Using Hopfield Network

초록

데이터 클러스터링은 서로 유사한 성질을 갖는 데이터들은 동일한 클러스터에 분류하고, 이질적인 데이터는 다른 클러스터에 분류하여, 클러스터 내의 유사성은 최대로 하고 클러스터와 클러스터사이의 유사성을 최소로 하는 것을 말한다. 데이터 클러스터링은 데이터 마이닝, 기계 학습, 패턴 인식, 통계 분야 등에 다양하게 활용되고 있다. Hopfield 네트워크는 조합적 최적화 문제를 해결하는데 사용되어 좋은 결과를 나타내고 있다. 본 논문에서는 Hopfield 네트워크를 사용하여 데이터 클러스터링 문제를 해결하는 알고리즘을 연구하였고, 실험을 통해 기존의 방법과 비교하였다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일