$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

GA에 의한 특징 선택에 따른 Support Vector Machines을 이용한 얼굴 인식

Face Identification using Support Vector Machines with Features Set extracted by Genetic Algorithm

초록

본 논문에서는 유전자 알고리즘(GA)과 Support Vector Machine(SVM)을 결합하여 사용한 얼굴 인식 시스템을 제안한다. 기존의 SVM을 이용한 얼굴 인식 연구에서는 얼굴 전체 영상을 SVM의 입력벡터로 사용하는데 반해, 본 연구에서는 GA를 이용하여 얼굴 영상 중에서 개인별로 식별 능력이 우수한 특징들만을 선택하여 이를 SVM의 입력벡터로 사용한다. 조명, 표정, 안경 착용 등 다양한 변화가 있는 Yale 얼굴 데이터베이스를 사용하여 실험한 결과, 얼굴 전체 영상을 사용한 경우보다 더 좋은 인식률을 보였다. 또한 제안된 방법에 의한 얼굴 인식 시스템은 각 개인별로 식별력이 우수한 특징들만을 저장하므로, 얼굴인식 시스템을 구성하기 위해 저장될 정보의 양이 현저하게 감소하게 된다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일