$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

헬름홀츠 머신 기반의 탐색점 분포 학습에 의한 최적화

Optimization by Helmhotz Machine-Based Learning of the Distribution of Search Points Using Helmholtz Machine

초록

많은 최적화 문제에서 해답들의 구조는 서로 의존성을 가지고 있다. 이러한 경우 기존의 진화연산이 사용하는 빌딩 블록 개념으로는 문제를 해결하는데 많은 어려움을 겪게 된다. 이를 극복하기 위해서 헬름홀츠 머신(Helmholtz machine)을 이용해서 데이터의 분포를 예측한 후 최적화를 수행하는 방법을 제안한다. 기존의 진화 연산을 바탕으로 하지만 교차연산이나 돌연변이 연산을 사용하는 대신에, 헬름홀츠 머신을 이용해서 데이터의 분포를 파악하고, 이를 이용해서 새로운 데이터를 생성하는 과정을 통해 최적화 과정을 수행한다. 진화연산으로 해결하는데 곤란을 겪고 있는 여러 함수들을 해결하는 이를 검증하였다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일