$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

점증적 정돈기법의 SOG를 이용한 개선된 세선화 알고리즘

Improved Thinning Algorithm using SOG with Incremental Ordering method

2001 봄 학술발표논문집(B) 2001 Apr. , 2001년, pp.334 - 336  
초록

세선화 알고리즘의 간접 기법으로 제시된 자기구성 특징 그래프(Self-Organizing feature Graph : SOG) 기법은 안정된 세선화 결과를 가지는 장점이 있으나 학습 알고리즘에서 전체 노드를 재정돈하는 과정이 내포되어 있다. 본 본문에서는 학습 알고리즘의 재정돈 과정을 대신하는 점증적 정돈기법을 제안하고 이 기법을 세선화 알고리즘에 결합하여 실험하고 분석하였다. 제안된 알고리즘은 기존의 SO를 적용한 결과와 같은 우수한 세선화 결과를 얻으며 학습시간은 O((logM)$^3$)인 복잡도를 가진다.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일