$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

채팅 텍스트로부터의 회자 감정상태 학습

Learning Emotional States of Chatting Partners from Text Data

2001 봄 학술발표논문집(B) 2001 Apr. , 2001년, pp.340 - 342  
초록

현재 인터넷 환경에서 텍스트는 다루기 쉽고 부하가 적어 가장 많이 사용되는 통신 수단이다. 그러나 화상 채팅과는 달리 자신의 표정이나 체스춰를 전달할 수 있는 방법이 없기 때문에 표현상의 한계가 있다. 이 글은 일상 대화를 텍스트로 입력받아, naive Bayes 알고리즘을 사용해 미리 정의된 감정 범주, 즉 울기, 웃기, 화내기 등으로 분류해 주는 방법에 관해 다루고 있다. 채팅사이트에서 수집된 학습데이터는 사람에 의해 해당 감정 범주로 태깅되고, 이렇게 태깅된 데이터가 학습엔진에 의해 통계 정보로 구축되면, 실제 채팅사이트에서 감정인식 엔진은 입력된 데이터를 분석해 해당 감정으로 분류한다. 연령별로 5개의 그룹으로 나눈 대화방에서 각각 1000문장씩 테스트해본 결과 평균 91.6%의 정확도를 얻을 수 있었다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일