$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

생명정보학에서의 거대규모 특징추출을 위한 종분화 GA의 활용

Applying Speciated GA to Huge-scale Feature Selection in Bioinformatics

초록

최근 생물 유전자 정보에 대한 관심이 커지면서 이를 위한 효과적인 분석 방법이 요구되고 있다. 특히, 분류기의 데이터로 사용하기 위해서 필요한 특징만을 뽑는 과정인 특징 추출은 대량의 유전자 정보에서 의미 있는 정보를 선별하는 중요한 과정이다. 그러나 유전자 정보는 사용되는 데이터의 특징규모가 매우 크기 때문에 일반적인 데이터 마이닝 기법으로는 분석이 힘들다. 본 논문에서는 효율적인 거대규모 특징 추출을 위해 유전자 알고리즘(GA)파 신경망을 사용한 특징추출 방법을 소개하고, 종분화 기법을 사용한 효과적인 특징추출 방법을 제시한다. 그리고, CAMDA 2000에 공개된 암 DNA Microarray로 안종류를 분류하는 문제에 대하여 성능을 평가하였다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일