$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 추천 시스템의 예측 정확도 향상을 위한 전처리 방법
Preprocessing Methods for Improving Prediction Accuracy in Recommender Systems 원문보기

2002봄 학술발표논문집(B):Proceedings of The 29th KISS Spring Conference(한국정보과학회), 2002 Apr., 2002년, pp.247 - 249  

박석인 (연세대학교 컴퓨터과학과) ,  김택헌 (연세대학교 컴퓨터과학과) ,  류영석 (연세대학교 컴퓨터과학과) ,  양성봉 (연세대학교 컴퓨터과학과)

초록
AI-Helper 아이콘AI-Helper

협력적 여과(collaborative filtering) 방법을 사용하는 추천 시스템에서 예측 정확도를 높이는 방법들 중 하나는 군집화(clustering)방법이 있다. 군집화 방법은 선호도가 유사한 사용자들을 미리 같은 군집으로 만들고, 군집 내에 속한 사용자들을 이웃으로 선정하여 예측을 수행하기 때문에 군집화의 결과가 예측의 정확도에 직접적인 영향을 주게 된다. 본 연구에서는 군집화 결과의 향상을 위해 데이터를 전 처리하는 두 가지 방법과 군집화의 특성을 이용한 새로운 예측식을 제안하고, 기존 연구 방법과의 비교 실험을 통해 실험결과를 분석한다.

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 그리고, 기존 협력적 여과 방법에서 사용하는 예측식은 사용자간의 유사도를 반영하여 값을 계산하는데, 군집화 를 이용할 경우, 이미 각 군집이 유사한 선호도를 갖는 사 용자들로 분류되기 때분에 유사도에 대한 중복성을 갖;:- 다. 본 논문에서는 이러한 경우, 예측식에서 유사도흘 반 영하지 않아도 유사한 기능을 수행할 것으로 보-고, 새로 운 예측식을 제안한다.
본문요약 정보가 도움이 되었나요?

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로