$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

개념 기반 이미지 검색 시스템을 위한 WordNet 적용 방안

Applying Method WordNet for Concept based Image Retrieval system

초록

기존의 키워드 기반 이미지 검색에서는 의미적 내용 인식을 위해 일반적으로 어휘적 정보나 텍스트 정보를 인간이 주석 형태로 달아주었다. 그러나 이런 텍스트 정보 기반 이미지 검색은 개념적 매칭이 아닌 스트링 매칭이므로 주석을 달아놓은 단어와 정확한 매칭이 없다면 찾을 수가 없다. 이러한 문제를 해결하기 위해 본 논문에서는 개념 기반 이미지 검색 시스템을 위한 WordNet의 적용 방안에 대해 연구했다. WordNet은 단언형이 아닌 단어의 의미 즉 synset이 구성 요소라는 특징을 이용해 각각의 이미지에 텍스트 정보 대신 적합한 개념의 Synset번호를 저장한다. 그리고 검색시 개념간의 유사성 측정을 이용해 검색어와 개념적으로 유사한 모든 이미지를 검색하도록 한다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일