$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

데이터 스트림에서 빈발항목 탐색을 위한 메모리 사용량 최적화

Memory Adaptation in Finding Frequent Itemsets over Data Streams

초록

컴퓨팅 환경의 발달로 방대한 양의 정보들이 매우 빠른 속도로 생성되고 있다. 구성 요소가 지속적으로 발생되는 무한 집합으로 정의되는 데이터 스트림에 대한 마이닝 방법은 이들 정보로부터 중요한 지식을 효과적으로 얻을 수 있는 방법으로 최근 들어 다양한 방법들이 활발히 제안되고 있다. 이러한 마이닝 방법에서는 지속적으로 확장되는 데이터 스트림의 특성으로 수행과정에서 메모리 사용량을 가용 범위 내로 제한하는 것이 중요한 고려 사항이 되고 있다. 본 논문에서는 데이터 스트림에서 빈발 항목을 탐색하는데 있어서 가용 메모리 범위에서 최적의 메모리를 사용하여 최상의 마이닝 결과를 얻을 수 있도록 하는 메모리 사용량 최적화 방법을 제시한다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일