$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 근사화된 HOG 를 이용한 사람 검출
Pedestrian detection using approximated HOG 원문보기

한국정보처리학회 2011년도 제35회 춘계학술발표대회, 2011 Apr. 30, 2011년, pp.374 - 375  

김봉모 (한양대학교 컴퓨터공학과) ,  김용민 (한양대학교 컴퓨터공학과) ,  박찬우 (한양대학교 컴퓨터공학과) ,  박기태 (한양대학교 BK21) ,  문영식 (한양대학교 컴퓨터공학과)

초록
AI-Helper 아이콘AI-Helper

보행자 탐지를 위해 많은 알고리즘들이 제안되었고 그 중 HOG 알고리즘은 가장 좋은 성능을 보이는 알고리즘으로 알려져 있다. 하지만 HOG(Histogram of Oriented Gradients) 알고리즘은 연산량이 많아 계산 속도가 느려 실시간 시스템에 적용하기는 힘들다. 본 논문은 HOG 알고리즘으로 얻어진 특징 벡터를 이용해 보행자를 인식하는 방법의 속도 개선에 대하여 연구하였다. 기존 HOG 알고리즘에서 계산량이 많은 곳이 어느 부분인지 분석하고, 그 중 기울기와 방향을 계산하는 부분의 근사화를 통해 계산 속도를 높이는 방법을 제안한다.

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 논문에서는 검출률은 높지만 연산량이 많은 HOG 알고리즘을 검출률에 큰 영향을 미치지 않고 연산을 근사화하여 계산 속도를 향상하는 알고리즘을 제안한다.
  • 그래서 Zhu 는 블록 크기를 다양하게 하고 개수를 늘려 Adaboost 학습기를 연속(Cascade) 사용하여 속도를 높이는 방법을 제안했다[4]. 본 논문에서는 HOG 알고리즘 중 기울기, 방향 계산 부분을 근사하여 알고리즘의 계산 속도를 향상시키는 방법을 제안한다.
본문요약 정보가 도움이 되었나요?
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로