$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 논에서의 지표배수량 산정을 위한 인공신경망기법 적용
Application of an Artificial Neural Network for Estimating Drainage from Paddy Plots 원문보기

한국수자원학회 2012년도 학술발표회, 2012 May 16, 2012년, pp.460 - 460  

안지현 (서울대학교 농업생명과학대학 조경.지역시스템공학부) ,  강문성 (서울대학교 농업생명과학대학 조경.지역시스템공학부) ,  송인홍 (서울대학교 농업생명과학대학 조경.지역시스템공학부) ,  이경도 (농촌진흥청 국립식량과학원) ,  장정렬 (한국농어촌공사 농어촌연구원) ,  송정헌 (서울대학교 농업생명과학대학 조경.지역시스템공학부)

초록
AI-Helper 아이콘AI-Helper

영농기간 동안 논에서의 유출량을 정량적으로 파악하기 위해서는 강우와 관개를 고려하여 논에서의 물수지를 파악하여야 한다. 효율적인 물수지를 분석하기 위해서는 관개량과 지표 유출량의 기작을 모니터링하는 것이 중요하지만, 지표 유출량의 경우 현장 관리나 영농 조건 변화 등에 따라 정확한 현장 자료 수집에 어려움이 있다. 따라서, 본 연구에서는 서울대학교 지역시스템공학과에서 운영하고 있는 평택의 논 포장을 연구 대상지로 선정하여 영농기간 동안 모니터링을 실시한 뒤 논에서의 물수지에 요구되는 현장자료를 수집하였다. 모니터링을 통해 수집된 기초 수문 자료를 활용하여 물수지식에 적용한 뒤 논 포장에서의 지표 유출량을 산정하였다. 본 연구에서는 현장 모니터링을 통하여 수집된 담수심, 강우량, 관개량 자료와 증발산량 산정에 있어 보다 큰 영향을 미치는 기상자료를 활용하여 입력자료를 구축한 뒤, 인공신경망 모형을 이용한 지표 유출량 추정모형을 구성하였다. 모형의 적용성을 평가하기 위하여, 구축된 학습 자료를 이용하여 학습을 수행하여 매개변수를 결정하였고, 그 결과를 바탕으로 유출량의 모의치와 물수지식을 통하여 산정된 유출량 값을 비교하여 모형을 검증하고, 그 결과를 평가하였다. 본 연구에서 제시된 모형은 지속적인 현장 모니터링과 이를 통하여 축적된 장기간의 수문자료를 활용하여 그 성능을 향상시킬 수 있을 것으로 사료된다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로