$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 머신러닝을 활용한 자동 채색 시스템 알고리즘 비교 분석
Comparison Analysis on Automatic Coloring System Algorithm Using Machine Learning 원문보기

한국정보처리학회 2017년도 추계학술발표대회, 2017 Nov. 01, 2017년, pp.792 - 794  

이송은 (동국대학교 정보통신공학과) ,  이지연 (동국대학교 정보통신공학과) ,  김나현 (동국대학교 정보통신공학과) ,  김진환 (동국대학교 정보통신공학과)

초록
AI-Helper 아이콘AI-Helper

현재 머신러닝(Machine Learning) 기술은 기존의 머신러닝과 조합 및 변형 되어 조금 더 발전 된 형태로 연구되어지고 있다. 따라서 수많은 알고리즘이 개발되고 있는 시점이다. 본 연구는 최근 좋은 결과로 관심을 받고있는 GAN(Generative Adversarial Net)을 중심으로 IT기술의 머신러닝과 그림을 조합하여 자동채색을 목적으로 GAN 알고리즘을 비교하고 분석하고자 한다. GAN 알고리즘들 가운데서 'Conditional GAN'과 'Wasserstein GAN'을 사용하여 자동채색을 적용시켰고, 가장 부합한 알고리즘을 찾고 성능을 비교하여 어떠한 알고리즘이 '자동채색' 목적에 더 부합한지 비교하고 판단 한다.

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 다양한 알고리즘은 각각의 장단점을 가지고 있고, 어떤 주제에 활용할지에 따라 그 성능에도 차이가 있다. 본 논문에서는 자동 채색시스템이라는 주제를 바탕으로 한다. 자동 채색 시스템을 Generative Adversarial Nets의 두 종류인 Conditional GAN과 Wasserstein GAN에 적용시켜, 결과를 비교해보고, 다양한 각도에서 성능을 비교 및 분석해본다.
본문요약 정보가 도움이 되었나요?

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로